GlacioBasis Manual

Revision 1 (3" November 2009)

Compiled by Michele Citterio, GEUS

Table of contents

TabIe Of CONTENTS ..ot 1
PIETAICE ... s 2
REVISIONS NISTONY ...ttt 2
GIACIOBASIScviiiieiieieie et bbb 3
GENEIAl INSTIUCLIONS ...ttt bbb e ne s 5

S LY ettt bbb b e ae e 5
Data collection, safeguarding and documentationcccocevevereiiereeieseeiee e 5
FIEld PrOCEUUIES ...t bbb n s 7
Ablation and VelOCItY StAKES ..o 7

5] 10111V o] | £SO 8
AWS establishment and MaintenNanCe.cocooveriiriniiniene e 9
GPS SUIVBYS ...ttt ettt ettt sttt sttt e nbe e e be e e nnb e e nnne s 11
GPR SUNVEYS. ...ttt ettt st e et e s e e e snn e e s nneennre e 12
CONTACTS ... bbb b e 14
Appendix A - AWS establishment and maintenance checklistccooevveiiiiiviiennenn. 16
AppendiX B — AWS Station deSIgNocvviiiieiiiiieie e 21
Appendix C — AWS plugs interNal WIriNgSccooviviiereniniene e 29
Appendix D — Datalogger PrOgraM..........coueieiierieiesieieseseeses e see e sseesae e ssesssesnes 37
Appendix E — Telemetry data retrieval program ..o 55

Preface

This manual provides information required to properly carry out GlacioBasis
glaciological fieldwork at the A.P. Olsen ice cap taking advantage of the logistic support
provided by the Zackenberg Research Station. The focus is on the field procedures and
technical details to be strictly followed to ensure the consistency and continuity of the
data collection in the field.

The manual in this first version should be regarded as being still in draft status.
Furthermore, some information such as deployed sensors or the updated location of the
ablation stakes can change slightly over time as a result of additions to the present setup
or re-establishment of lost stakes.

Revisions history
3" November 2009, version 1

GlacioBasis

The primary aim of the GlacioBasis monitoring programme at Zackenberg is to produce a
record of high quality glaciological observations from the A.P. Olsen Ice Cap and its
outlet glacier in the Zackenberg river basin. The A.P. Olsen Ice Cap is located at 74° 39’
N and 21° 42 W. The summit reaches an elevation of 1425 m and the terminus of the
outlet glacier contributing to the Zackenberg river basin is at 525 m (figure 1).
Zackenberg Research Station is located SE of the site, approximately 35 km downstream.
The most direct access to the glacier terminus is through Store Sgdal. The need to
measure winter accumulation requires fieldwork to be carried out during springtime,
immediately before the onset of significant snow melt. This timing is also necessary for
snow-mobile use, which greatly simplify access to the glacier and transport of equipment
and instrumentation. Fieldwork must be carried out every year in order to maintain the
stakes network operational and to service the automatic weather stations (AWS) on the
glacier.

Fig. 1 — Map of the investigated outlet glacier with the position of the stakes and AWS.

The severe scarceness of glacier mass balance measurements from glaciers and local ice
caps in East Greenland, the strong impact that local glaciers and ice caps outside the Ice
Sheet are expected to exert on sea level rise in the present century (Meier et al. 2007),
and the warming expected to occur in the Arctic (IPCC 2007) highlight the scientific

importance of GlacioBasis monitoring tasks. The anticipated use of the monitoring data is
to model the surface energy balance and the glacier mass budget with physically based
models that, once calibrated and validated with in situ data, will allow to model the
response of the glacier to future climate change scenarios.

Figure 1 provides an overview and map of the investigated outlet glacier of the A.P.
Olsen ice cap. The position of the 14 ablation and displacement stakes is shown, together
with the position of the three AWS.

GlacioBasis is conceptually linked to the other monitoring programmes in the
Zackenberg river basin through the contribution of glacier melt water discharge to the
river, its regime and seasonality, and its impact on solutes and sediment fluxes to the sea.
Furthermore, the study site offers opportunities to extend investigations to the glacier
dammed lake on the eastern side of the studied outlet glacier (which is regarded as the
source of several floods recorded downstream in the past years), and to the formation of
superimposed ice, which is expected to be significant at this site.

General instructions

All GlacioBasis personnel arriving at Zackenberg station must have read the ZERO Site
Manual (available from http://www.zackenberg.dk/NR/rdonlyres/8BA15D73-8D58-
4C17-ABDA-99C0067FD571/0/ZERO20Site20Manual2C20ver2027102008.pdf) and
must commit to follow its instructions. This is particularly important with regard to the
restricted mobility in the protected areas around Zackenberg Station.

Safety

Safety is the first priority for all GlacioBasis personnel in the field. All instructions from
the Zackenberg Station manager must be followed strictly. Due care and sound judgment
must be applied at all times, especially upon leaving the immediate surroundings of the
station, when driving snowmobiles, and on the glacier.

All personnel will need to be confident in the use of firearms for defending themselves
and their colleagues against polar bears and musk oxen, and is requireed to carry a rifle
and ammunition when leaving the station’s surroundings. Firearms, ammunitions and
flare guns are provided by Zackenberg Station. All GEUS personnel is required to have
attended to the GEUS shooting course, the first aid course, the glacier safety course and
the snow safety course. These courses are intended to enable each participant to

make an informed assessment of the safety conditions at all times. Since VHF radio
communication is not possible from the glacier to Zackenberg Station due to the terrain
morphology, an Iridium phone must be carried during every trip to the glacier. VHF
radios may be useful to locally coordinate work on the glacier.

It is the participant’s responsibility to plan ahead before leaving Denmark and make sure
all the required personal field gear is available and in good working conditions. Personal
safety equipment for GEUS personnel can be procured through GEUS.

Data collection, safeguarding and documentation

GlacioBasis aims at producing a consistent dataset of high quality observation data, and
this requires that documented field procedures are followed strictly and that metadata be
always attached to all data produced in the field. All maintenance work on the automatic
weather stations (AWS) must be documented using the field maintenance checklist in
Appendix A, with special care to recording the serial numbers of the instruments and the
initial readings. Pictures should always be numbered and referenced in the maintenance
checklist. Further details relevant to the specific monitoring tasks are provided in the
following sections.

It is important to safeguard against accidental loss of data by duplicating field notes on a
daily basis and ensuring that one copy remains at the Station while the other (if necessary

for reference) is carried in the field. Use of special field notebooks, A4 size sheets and
printed forms made with water-resistant paper is recommended. Electronic data will need
to be duplicated on at least two separate storage supports to safeguard against data
corruption.

Since fieldwork is being carried out at a remote location posing significant operative
challenges, a trade-off may be required at times to ensure that the most important
measurements are carried out even when the prescribed field plans and procedures can
not be implemented fully due to unexpected weather or field conditions. The field leader
is responsible for prioritizing the pending tasks in consideration of the available resources
and without compromising safety and the quality of the measurements. In the exceptional
case that a measurement can not be made by strictly following the prescribed protocol,
this must be fully documented in the metadata.

Relevant GlacioBasis data will need to be fed into the Zackenberg Basis database.

Field procedures

Ablation and velocity stakes

A network of 14 ablation and surface velocity stakes distributed along the central flow
line has been established in spring 2008 on the outlet glacier of the A.P. Olsen ice cap
and along three transects at elevations of approximately 675, 900 and 1300 m (figure 1
and table. 1) respectively. Each 6 m long stake was assembled from 2 m lengths of
aluminium tube. A Kovacs drill was used with success, allowing very fast drilling
operations.

ID LAT LONG

01 N7437.1293 WO02121.8890
02 N7437.4536 WO02123.0806
05 N7438.3637 WO02125.6941
04 N7437.9356 WO02123.9705
03 N7437.6633 W02122.1934
06 N7438.5687 W02125.3384
08 N7438.9168 W02128.2411
07 N7438.5616 W02129.0397
10 N7439.6703 WO02133.1732
09 N7439.2688 W02130.5855
12 N7439.7398 W02136.0492
11 N7439.0492 WO02136.2686
13 N7440.5023 W02136.3062
14 N7439.8511 WO02140.4234

Tab. 1 — Position of the ablation and displacement stakes.

The stakes must be measured and re-drilled every year following this procedure
(assuming the current planning of only one visit per year in springtime):

1. upon approaching an existing stake, take a picture documenting the undisturbed
site

2. measure the length of the stake above the snow surface

3. place the GPS antenna on top of the existing stake and start a measurement with
the most accurate survey mode available (see GPS section). If tilted, note attitude.

4. take a note of stake number, date, time, picture number, air temperature, GPS
survey mode being used for the precision survey and GPS fix from the handheld

5. probe with an avalanche probe the snow depth in the immediate surroundings of
the stake and record all measurements, not just the average

oo

10.

11.

12.
13.

14.

15.

if time or weather constraints prevent digging a snow pit at every stake, pay
particular care when probing to “feel” the snowpack stratigraphy and assess how
similar it appears to be to other stake sites where a snow pit has been dug. A snow
pit is required in any case if the elevation of the stake site or the

snowpack depth are significantly different from the closest snow pit measured.

dig a snow pit in the surroundings of the stake site without disturbing the stake,
and survey it following the procedure in the “snow pits” section.

recover the emerging lengths of aluminum tube from the old stake

mark the top of the remaining old stake by over-expanding one of the old joints in
such a way that it will permanently remain attached to the stake end.

drill the new stake close to the existing one using the Kovacs drill (pay special
care when using the Milwakee electric drill to avoid being hardly hit by the drill
in case the drill suddenly gets stuck in the hole. The two strokes engine has lower
torque.

never leave the drill sitting still in the hole to avoid it getting frozen to the hole, or
otherwise it will be lost.

measure the length of the new stake above the ice and snow surface

place the GPS antenna on top of the stake and start a measurement with the most
accurate survey mode available (see GPS section)

probe with an avalanche probe the snow depth in the immediate surroundings of
the new stake and record all measurements, not just the average

upon leaving, take a picture documenting the site conditions

Required equipment:

map and updated coordinates of the stakes

handheld GPS with waypoints in memory marking the position of stakes
measuring tape

camera and field notebook

avalanche probe

spare aluminium tubing and connection fittings

snow pit Kit (see below)

Snow pits

The most important data obtained from a snow pit are the water equivalent depth and the
density profile of the snow pack. Additional observations should be carried out whenever
possible following this priority: temperature profile, snow crystallography, dusts layers,
penetrability profile. The snow pit will be surveyed following this procedure:

1. mark in the snow surface the intended outline of the snow pit orienting it so that
the side wall where observations will be made is facing away from the sun

2. take a picture documenting the unexcavated site

3. take a note of snow pit position, date, time, pictures number and air temperature

4. dig the snow pit paying attention not to disturb the snow surface along the side
where observations will be made

5. deepen the snow pit until glacier ice or the previous summer surface are found
and prepare the vertical surface to be measured

6. measure the temperature profile allowing sufficient time for the thermometers to
settle to a stable reading

7. identify the snow stratigraphy and mark the surfaces of the various levels

8. measure and record the total thickness of the snowpack and the thickness of the
individual snow layers, recording any surface enriched with dust

9. using a sampler of known volume take an horizontal core at 1/3 from the bottom
of each snow layer, weigh the sample with a precision spring scale

10. describe the crystallography of the snow and proceed to the following layer

11. take pictures documenting the snow pit

12. fill back the snow pit before leaving

Required equipment:

map and handheld GPS

camera and field notebook

avalanche probe

shovel (it is recommended to have both a broad light shovel and a smaller one
with sharpened edge to negotiate high strength wind drifted or refrozen snow)
e snow pit kit, containing:

known volume sampler

rubber head hammer

plastic bags

precision scale

snow stratigraphy survey forms

reference scale and crystal type card

insertion thermometers

lens

foldable measuring bar or measuring tape

AWS establishment and maintenance

The establishment and setup of an AWS need to be carried out following the checklist in
Appendix A, filling in all details required in the form and taking pictures documenting
the conditions of the AWS both upon arrival (before any disturbance to the instruments
and the snow cover) and upon leaving the site. Particular care must be paid at the proper
leveling and orientation of the sensors. All technical details of the AWS desing, internal

and plugs wiring, and datalogger programming are contained in Appendix B, C and D
respectively. Fig. 3 provides an overview of the station marked as AWS 1 in Fig. 1

Fig. 3 — Overview of the AWS and the sensors. 1. Air temperature and humidity
(aspirated); 2. SW|, LW|, SW?, LW? radiation; 3. Wind speed and direction, 4. Snow
surface level; 5. two-axes tilt meter, 6. Iridium satellite antenna; 7. GPS receiver and
Iridium modem, 8. Air pressure; 9. Surface level (sonic ranger), 10. Thermistors string
(GEUS); 11. Hydraulic ablation meter (GEUS)

Telemetry data transmitted through the Iridium satellite system is received at GEUS as
email messages and the data can be retrieved from within GEUS intranet by a user with
appropriate permissions to access the dedicated mailbox using the Python program
attached in Appendix E.

10

Required equipment:

The following table 2 (prepared by Sgren Nielesn, GEUS) describes various
recommended set of tools to setup or carry out maintenance on a GlacioBasis AWS.
Some of the items may only be required when testing the instruments at Zackenberg
Station and may be left behind when leaving for the glacier.

MINIMUM MEDIUM COMPLETE
Svensknggler 8" el. 6" med brede kaeber
Svensknggle 4"
Lose skraldefastnagler 10-13-17 mm D Fastnggleseet 8-10-13-15-17-19 mm

Skruetraekker & bit saet
Urmagerskruetraekkersaet

| | Bacho PH1x75 For iridium antenna D Bacho 1x5,5x100 BE-8150
| | Vandpumpetang
| | Stor skeevbider
| | MoraKniv
| | Stanleykniv
| | Skalpel
Umbraco, mm 1 seet lgse, 1 - 10 mm Umbraco, mm, with handle 4-6-8mm Ngdvendige umbrako:
Umbraco, " 1 seet lose, 1/16 - 3/8 " Umbraco, ", with handle 1/4 - 5/16 1/4" - 5/16" KeeKlamp
4 mm CNR1
H Umbraco, mm, "Knife model" 8 mm Letrona
H Elektronik skruerteekker Campbell Umbraco, ", "Knife model"
Lille elektronik skruerteekker CK 2,5x75 el. Bacho 0,4x75 -
| | Elektronik bidetang
Multimeter | | Elektronik spidstang
Digitalt waterpas S-Digit Mini | | Loddekolbe, gas eller opladelig
Magnetisk kompas Silva pejlekompas L | Loddetin
186 mm Kabelbindere D Batteries: AAA - AA -9V
360 mm Kabelbindere o
| | Wiresaks
D Laseolie | | 1" Rerskeerer
|| Juniorbue
H Silicone DowCorning 732 (Cheap) | | Topnggler5,5-7-8mm 5,5: 3 mm nuts on plugs
7 - mm: Forskellige
do. DowCorning 3140 (Flowable) | | Lille borseet speaendband
| | Crimptang
Bolts 8x20 SS 5mm battery nuts 1mm2 wire Crimp conn. (Red) Washers
Nuts 8 mm Nuts 5 mm Small cable tiers Tube clamps small |6mm Bolts
Bolts 8x16 SS 3mm Bolts & Nuts M10 Bolts & Nuts Tube clamps medium |6 mm Nuts
Nuts 8 mm Selftapping screws | Terminal strips CF Cards KeeKlamp screws
Spare plugs: CA6LS For sensors (Solder) 2
CA3LD For batterycable, solar panel 2
CA6GD Panel connectors, sensors (Solder) 2
CA3GS Panel connectors, power 2
9pole plugs For t:string, CNR1 (Crimp) 2
9pole panel sockets Panel conn., 9 pole (Crimp) 2

Div. Spares: Silicon 2 tubes, 732 (Cheap) - 3140 (Fluid)
Hose clamps Large (ex. For CNR1)

Tab. 2 — Various options for the recommended tools for AWS setup and maintenance.

GPS surveys

GlacioBasis has three main uses for GPS measurements: tracking the displacement of the
stakes, positioning the GPR radar traces, and mapping the surface elevation of the

glacier. These tasks require differential GPS (DGPS)

accuracy, and all efforts should be expended in obtaining them. Standalone GPS

measurements should be avoided since they are much less accurate, and should only be

11

taken when the available equipment or other technical circumstances prevent operations
in DGPS mode.

The detailed procedure for taking DGPS measurements vary with the specific receiver
model used, see the instrument documentation for details.

Whatever the instrument used, the model, configuration and setup must be recorded and
special care must be paid in properly configurating the antenna parameters and in
positioning the antenna on the stake. Unobstructed view of the sky must be ensured.

GPR surveys

Snow depth profiles are surveyed with a 500 or 800 MHz shielded antenna and either
constant time (0.25 sec) or constant distance (0.5 m) settings by setting up the antenna on
a fiberglass sled towed by a snowmobile. The monitor should be setup so that the
snowmobile driver can see the data being acquired and adjust the speed consequently.
Every few hundred meters, and also every time unclear features are seen on the display,
the snowmaobile must stop and a few measurements of the snopack depth must be taken
with the avalanche probe, recording all the values and not just the average.

Data files will be frequently downloaded from the GPR instrument to a USB stick and
daily backed-up to a second storage support to be kept at Zackenberg Station.

The tracks to be followed during the GPR survey should cover the glacier as evenly as
feasible, but avoiding dangerous crevassed areas unless the snow cover is abundant and
safe. As an example, Fig. 2 shows the tracks followed in 2008. GIS files with the tracks
surveyed during previous years are available from within GEUS intranet in the folder:

\\Geusntl\glaciologi\GlacioBasis\GlacioBasis Manual\GIS files\

12

Fig. 2— GPR tracks followed during the 2008 snow depth survey.

Reasonably accurate positioning of the GPS traces is important, even though D-GPS
accuracy is not a strict requirement for snow depth monitoring.

13

Contacts

This is the updated list of contact details including phone numbers and addresses for use
during the fieldwork season fieldwork. It is mainly for the personnel in the field, but also
contains some contacts useful during the trip to Greenland and for arranging
unanticipated shipments.

name
Michele
Citterio

Andreas
Ahlstram
Saren Nielsen

Marianne
Vestergaard

GEUS
switchboard
GEUS doctor

Mala
Geoscience
Geoteam

Zackenberg
Station

Henrik
Spanggard
Morten Rasch

Air Greenland
Constable Pynt
Norlandair
Akureyri
Kristbjorg
Bjornsdattir

email
mcit@geus.dk

apa@geus.dk

sn@geus.dk

mve@geus.dk

geus@geus.dk

support@geote
am.dk
logistics@zack
enberg.com

hesm@fi.dk

mr@fi.dk

kibba@norlan
dair.is

phone
+45 38142113

+45 38142794

+45 38142321

+45 38142200

+45 38142000

+46 95334550

+45 77332233

+45 72488134

+299 991044

+354 4146960

mobile (*)

457248 8110

competence
scientific and technical
issues, fieldwork
planning, project
management
scientific issues

technical issues with
AWS, support with
shipments

reporting of accidents
and injuries during
fieldwork (for GEUS
personnel)

general contact

emergency medical
consultation

technical support for
GPR-related issues
technical support for
GPS-related issues
communications to
people in the field (must
specify name)

Logistics issues

Zackenberg Station

scientific leader

issues related to
unanticipated shipments

+354 8601208 arranging or tracking

unanticipated shipments

14

* several phone numbers are not published here and must be obtained before leaving
Denmark. The complete page is available from within the GEUS intranet in this folder:
\\Geusntl\glaciologi\GlacioBasis\GlacioBasis Manual\contacts.doc

Boxes and all cargo to be delivered to GEUS shall always be addressed to:
GEUS varemodtagelsen, Riegensgade 13, DK-1316 Copenhagen K

Alternatively and only upon agreement with the logistic staff at Zackenberg Station, the
delivery can be routed through DMU in Roskilde. This option may in general be cheaper
but slower, and either Michele and/or Sgren at GEUS will need to be notified of the
shipment.

The address for regular mail correspondence is to:
Michele Citterio, GEUS, @ster Voldgade 10, 1350 Copenhagen K

15

Appendix A - AWS establishment and maintenance
checklist

(Dirk van As, GEUS)

16

AWS maintenance / establishment checklist version 5

Station name

Observer(s)

Purpose of visit

Establishment of new AWS: Go to Metadata after maintenance / establishment

Metadata upon arrival

Date & time of arrival at station

Time difference between logger clock and UTC +/-
Adjust logger time to UTC Y/N
Download data to PC and/or change CF Card (wait for green light) Y /N
Download logger program to PC Y /N
Note or photograph current values in fast scan mode Y /N
Latitude (dd mm.mmm)

Longitude (dd mm.mmm)

Altitude (m, from GPS)

Photos of tripod, sensors, logger box wiring etc. Y/N

Mast inclination in CNR1 direction (+ if CNRL1 tilting down)

o

Mast incl. across boom looking from CNR1 (- if clockwise)

[¢]

Boom direction relative to true/magnetic north

° true/magn

Young box direction along boom? If not, measure direction Y/N
CNR1 aligned with mast and inclinometer? If not, measure Y/N
Young height (center of propeller — surface) cm
Rotronic height (bottom of casing — surface) cm
SR50 height on AWS (membrane — surface) cm
SR50 height on stakes (membrane — surface) cm
Free length of stake — outer, holding boom with SR50 cm
Free length of stake — middle cm
Free length of stake — outer, holding boom without SR50 cm
Length of ablation sensor tubing on the surface (to T-piece) cm
Or: depth of ablation sensor using markings on hose cm
Length of thermistor string on surface from surface marking cm

Remarks:

17

Maintenance step-by-step

Change Internal battery? Data and program will be lost! Y/N
Change vent filter in logger enclosure? Y /N
Change wires or aluminum of tripod? Y /N
Change sonic rangers membranes or replace by new sensors Y / N/ New
Align CNR1 and inclinometer with mast within 0.5° Y/N
Clean domes and check fastenings of CNR1 Y/N
Change Hygroclip in Rotronic Y /N
Rotronic fan OK? Y/N
Apparent damage to Young wind sensor? Y /N
Clean solar panel Y/N
Voltage solar panel OK? Y /N
Refill ablation hose? Y /N
Redrill stakes Y/N
Refill Ablation drinking bag (With L, 100/50%) Y/ N
Redrill old ablation hose? Y /N/new
Redrill old thermistor string? Y / N/ new
Change desiccant bags in logger box Y /N
Change desiccant bags in battery box Y/N
Upload new logger program? (Name: Y /N

Remarks:

18

Metadata after maintenance / establishment

Latitude (dd mm.mmm)

Longitude (dd mm.mmm)

Photos of tripod, sensors, logger box wiring etc.

Y/N

Mast inclination in CNR1 direction (+ if CNRL1 tilting down)

o

Mast incl. across boom looking from CNR1 (- if clockwise)

o

Boom direction relative to true/magnetic north

° true / magn

Young box direction along boom? If not, measure direction Y/N
CNR1 aligned with mast and inclinometer? If not, measure Y/N
Young height (center of propeller — surface) cm
Rotronic height (bottom of casing — surface) cm
SR50 height on AWS (membrane — surface) cm
SR50 height on stakes (membrane — surface) cm
Free length of stake — outer, holding boom with SR50 cm
Free length of stake — middle cm
Free length of stake — outer, holding boom without SR50 cm
Number of 2-m pieces used for new stakes 1/2/3/41/5
Length of ablation sensor tubing on the surface (to T-piece) cm
Or: depth of ablation sensor using markings on hose cm
Length of thermistor string on surface from surface marking cm
Approximate height of surface irregularities cm

Time of departure

Remarks:

19

Serial numbers of hardware

SR50 Snow (sonic ranger on AWS)

Replaced with:

SR50 Abl (sonic ranger on stakes)

Replaced with:

Rotronic assembly (Assembly no. if new assembly)

Hygroclip S3 no. replaced with:
MP100H no. replaced with:
RS12T (Fan) no. replaced with:
MKRS (Arm) no. replaced with:

NT1400 pressure transducer (Retrieved / Left in ice)

Replaced with:

Thermistor string (Retrieved / Left in ice)

Replaced with:

CNRL1 radiation sensor

Replaced with:

Young wind sensor

Replaced with:

Inclinometer

Replaced with:

Solar Panel

Replaced with:

Iridium modem (if present), IMEI number:

Replaced with:

DC-DC Converter (SYN-DC-936)

Replaced with:

Satellite antenna

Replaced with:

GPS antenna

Replaced with:

In loggerbox:

Logger Cr1000/CR10X

Replaced with:

Card reader CFM100

Replaced with:

Multiplex AM16/32

Replaced with:
Barometer

Replaced with:
Remarks:

20

Appendix B — AWS station design

(Michele Citterio, GEUS)

21

Glaciobasis Main AWS
Rev. MCIT 17 Mar 2008

NOTE: This is the working setup with program revision 1.3
Design changes or additions from the previous revision (9 Feb 2008) are written like this. See also
the list of changes at the end of the document.

Datalogger and multiplexer box

CR1000 wirings

Top wiring strip

CR1000 side Sensor side Device name
DIFF1 SE1 H > EX2 _
SE2 L - RED HygroClip n. 1 (through a Campbell 4WPB100)
GND G -- VIO HygroClip n. 1 (through a Campbell 4WPB100)
SE3 ORA HygroClipn. 1
DIFF2 SE4 BLK HygroClipn. 1
GND shield HygroClip n. 1
DIFF3 SE5 H > EX2
SE6 L - RED CNR1 - Pt100 cable (through a Campbell 4WPB100)
GND G--BLU CNR1 - Pt100 cable (through a Campbell 4WPB100)
DIFE4 SE7 YEL CNR1 - Pt100 cable
SE8 GRE CNR1 - Pt100 cable
GND SHIELD CNR1 - Pt100 cable
EX1 BLU Young wind
GND open
P1 RED Young wind
GND BLK Young wind
P2 open
GND open
Middle wiring strip
DIFF5 SE9 H > EX2 _
SE10 L-RED HygroClip n. 2 (through a Campbell 4WPB100)
GND G--VIO HygroClip n. 2 (through a Campbell 4WPB100)
SE11 | ORA HygroClip n. 2
DIFF6 -
SE12 | BLK HygroClip n. 2
GND shield HygroClip n. 2
DIFE7 SE13 | > MUXODDH Multiplexer COMMON, ODD DIFF. CHANNEL
SE14 | > MUXODD L Multiplexer COMMON, ODD DIFF. CHANNEL
GND - MUXGND Multiplexer COMMON
- + YEL + YEL HygroClipn.1and n. 2
DIFES SE15 - RES. PANEL n. A | Resistor bridges panel for the thermistor string
SE16 | > RES.PANELn.B Resistor bridges panel for the thermistor string
GND -> RES. PANEL n. C Resistor bridges panel for the thermistor string
EX2 - SE1+SE5+SE9 The black wires of the Campbell 4WPB100 bridges
GND shield + shield SR50n.len.?2
EX3 WHI (thermistor sring) | Termistor string and NT1400 bridge pressure

+ RED (NT1400)

transducer

22

Bottom wiring strip

G open
5V open
G BLK Setra barometer
SW-12 - SW-12V DISTRIB.
G -> MUX GND Multiplexer CONTROL & POWER
12V open
12v open
G - LED node A Low current LED with resistor
COM1 C1 2> MUX RES Mult!plexer CONTROL & POWER
C2 2> MUX CLK Multiplexer CONTROL & POWER
c3 open From CR1000 manual, this shouldn’t be used since
COoM2 we already use COM2 as a serial port
C4 WHI Garmin GPS
G BLK+YEL+shield Garmin GPS
COM3 C5 - LED node B Low current LE_D with resistgr _
— | C6b TX module relais control, active high
C7 GRE + GRE SR50n.1en.2
com4 C8 Fan relais control, active high
G WHI+BLK+WHI+BLK | SR50n.1en. 2
other
RS232 To NAL Iridium and GPS module. Needs a male-to-male 9 poles D adapter
Ground lug Current sensing shunts wiring box terminal post 15

RESISTOR BRIDGES PANEL FOR THE THERMISTOR STRING
(see drawing for the bridge circuit and the meaning of the node letters below)

Circuit side Logger and string side Device name
Node A - SE15 CR1000
Node B - SE16 CR1000
Node C - GND CR1000
Node D -> MUXEVENH Multiplexer COMMON, EVEN DIFF. CHANNEL
Node E -> MUXEVEN L Multiplexer COMMON, EVEN DIFF. CHANNEL

Node D

Node A

Node E
249k 249k
Node B
1k 1k

GND =node C

23

MULTIPLEXER

(it must be configured as a 4x16 MUX)

Multiplexer side Device side Device name
RES | > C1 CR1000
CON;ROL CLK | > C2 CR1000
POWER GND | > G CR1000
12V | 2 SW-12V DISTRIB. PANEL SW-12V DISTRIB. PANEL
H SE13 CR1000
g1 OPD M Tsena CR1000
= GND > GND (between SE14 - SE15) | CR1000
3 | cven H__| SELS CRL000
O L SE16 CR1000
GND open
1 H GRE Setra Barometer
L GRE Young wind
1 GND open
H open
2
L open
GND WHI, shield Young wind
3 H =2 current sense shunts, post 13 | Battery low side current sensing R hi
= L = current sense shunts, post 14 | Battery low side current sensing R 1o
2 GND open
4 H ORA Termistor string level 1
L BLK Termistor string level 2
GND open
5 H = current sense shunts, post 9 Solar panel low side current sensing R hi
= L - current sense shunts, post 10 | Solar panel low side current sensing R lo
3 GND open
6 H BLU Termistor string level 3
= L YEL Termistor string level 4
GND open
7 H = current sense shunts, post 6 Fan low side current sensing R hi
= L = current sense shunts, post 5 Fan low side current sensing R lo
4 GND open
8 H GRE Termistor string level 5
= L BRO Termistor string level 6
GND open
9 H = current sense shunts, post 2 Iridium low side current sensing R hi
= L = current sense shunts, post 1 Iridium low side current sensing R 1o
5 GND open
10 H PNK Termistor string level 7
= L VIO Termistor string level 8
GND open
11 H YEL Tilt sensor
6 L GRE Tilt sensor
GND GRY Tilt sensor
12 [H open

24

[L open
GND open
13 H RED CNR1 — Radiometers cable
L BLU CNR1 — Radiometers cable
7 GND open
14 H open
L open
GND open
15 H GRY CNR1 — Radiometers cable
L YEL CNR1 — Radiometers cable
8 GND open
16 H open
L open
GND shield
17 H WHI CNR1 - Radiometers cable
L BLK CNRL1 — Radiometers cable
9 GND open
18 H open
L open
GND open
19 H BRO CNR1 — Radiometers cable
L GRE CNR1 - Radiometers cable
10 GND open
20 H open
L open
GND open
21 H WHI HygroClipn. 1
L BRO HygroClipn. 1
11 GND GRY HygroClip n. 1
29 H open
L open
GND open
23 H WHI HygroClip n. 2
L BRO HygroClip n. 2
12 GND GRY HygroClip n. 2
24 H open
L open
GND open
25 H YEL NT1400
= L BLU NT1400
13 GND WHI NT1400
26 H open
L open
GND open
27 H open
L open
14 GND open
28 H open
L open

25

GND open

29 H open

L open

15 GND open
30 H open

L open

GND open

31 H open

L open

16 GND open
32 H open

L open

GND open

SW-12V DISTRIBUTION PANEL

Circuit side Sensor side Device name
> SW-12 CR1000
GRE HigroClip n. 1
GRE HigroClip n. 2
Just wire RED Setra barometer
everything 2> MUX 12V Multiplexer CONTROL & POWER
together RED SR50 n.1
RED SR50 n.2
BRO Tilt sensor
LED

The LED ishould be a low current type not to overload the CR1000 output which are specified to
max. 2 mA. Buy RS code n. 826-521 or 826-802 (buy both, RS must have some mistake on their
website so it isn’t clear which one is transparent, but they are still cheap enough...). Otherwise use

type recommended by Peer Jorgensen.

Node A

N

1k

Node B

26

CURRENT SENSING SHUNTS

(see drawing for the bridge circuit and the meaning of the node letters below)

Circuit side other side Device name
POWER IN G CR1000

15 Datalogger GND GND LUG
12 SP(-) Solar panel negative | Solar panels
16 BAT(-) Batteries negative Batteries (the negative terminals are all tied together)
4 TxGND Tx ground return Iridium module
8 FanGND Fan ground return Rotronic Fan
9 SP-H MUX SE5H MUX
10 SP-L MUX SE5L MUX
13 BAT-H MUX SE3H MUX
14 BAT-L MUX SE3L MUX
6 FAN-H MUX SE7H MUX
5 FAN-L MUX SE7L MUX
2 TX-H MUX SE9H MUX
1 TX-L MUX SE9L MUX
17 GND BOLT GND BOLT CR1000 (connect to the GND screw on the enclosure)

15 / Datalogger GND + datalogger GND lug
(and sensors ground, since their ground
returns are through the datalogger signal

ground wiring terminals)

1,3,5,7,9,11, 13, 15,
17 are all tied together 17/GND
in the wiring box BOLT

5/FAN-L 13/BAT-H
1/TX-L ? 9/SP-H
6/ FAN-H 14 /| BAT-L
® [
2/TX-H 10/ SP-L

4/TXGND 8/FanGND 12/SP(-) 16/BAT(-)
Iridium Fan ground Solar panel Battery
ground return negative negative
return terminal terminal

27

RS232 GENDER CHANGER AND TX-RX CROSSOVER ADAPTER

(numbers refer to a standard 9 pins D-type connector, see drawing)

SYN-DC-936 | CR1000 RS232
1 open

2 3

3 2

4 6

5 5

6 4

7 8

8 7

9 open

viewed from the pins side

List of design changes

1.

w

N

9.

10.
11.
12.

The LED is moved from C3 to C5 in order to leave C3 unused. This is required according to
the CR1000 documentation because we are using COM2 as a serial port (for the Garmin)
The previous connection from C5 to the manual FastScan switch is therefore removed, and
the switch is not available anymore since no spare control ports are available.

The EX3 excitation channel is now also exciting the NT1400 pressure transducer

In the MUX, the connections to the current sensing shuts have been added (at SE channels 3,
57,9

In the MUX, the missing connection to the other thermistors in the thermistor string have
been added (at SE channels 6, 8, 10)

in the MUX the connection for the NT1400 has been added (at SE channel 25)

added the wirings for the current sensing shunts

added RS232 adapter wiring

changed ground routing for the return of the pulse signal of the

added RS232 adapter wiring

changed ground routing for the return of the pulse signal of the Young sensor

the GREY wires of the HygroClips have moved from the CR1000 to the MUX

28

Appendix C — AWS plugs and internal wirings

(Seren Nielsen, GEUS)

29

Plug type Sensor

Remarks:

Battery box Female cable, male logger box
Solar Panel Female cable, male logger box
WD&S

Tasp Signal

Tasp Fan

SR50 Abl - Adress 0

Inclinometer
SR50 Snow - Adress 1
CNR Temp
CNR-1 signal
Thermistor string
NT1400

Tasp2 Signal
Tasp2 Fan
Iridium antenna
Barometer
Iridium modem

Plug no.

ZAK_M and ZAK_S1 wiring:
Plug 1 4 pole
Plug 2 4 pole
Plug 3 7 pole
Plug 4 7 pole
Plug 5 7 pole
Plug 6 7 pole
ZAK_M only wiring:
Plug 7 7 pole
Plug 8 7 pole
Plug 9 7 pole
Plug 10 9 pole
Plug 11 9 pole
Plug 12 7 pole
Plug 13 7 pole
Plug 14 7 pole
Gland PG11
Internal

Internal

Internal

ZAK_S1 only wiring:

Internal

GPS antenna to modem

Garmin GPS

Zak M ZAK_S
4 pole 2 male 2 male
7 pole 9 female 4 female
9 pole 2 female
Total 14 + PG11 6
On battery box:
4 pole 1 female 1 female

SN for the ZAK M amd ZAK S1 stations:

ZAK_M: CR1000 E1350
CFM100 3355
AS16/32 E3903
CS100 3440 409

ZAK_S1: CR1000 E1349
CFM100 2489

Garmin 16-HVS 3333 4963

30

Plug numbers and positions for ZAK MAIN AWS

ZAK SECONDARY AWS only uses plug 1-6

9 pole Q

11: THermist, & SRO0ADI

Vant 1: Battery

12:NT1400

O O O

9:CNR Temp

7: Incl

2:Solar P

8: SR50 Snow

3: WS&D

© O O O

13: Tasp2 Sig 14: Tasp2 Fan

O O O O

4:Tasp S3

@

10: CNR Sig

O

Iridium Ant

5: Tasp Fan-Pt100

6,5

5

5

A 4

»
»

v

»
>

v

»
»

Unmarked plugs are femal 7 pole.

v

-

31

Solar Panel Charge in
Grey

Battery Group A + Logger, Sensors

Terminal strip

—]

Pin 3 — A x>
— —| B

Battery Group B + Fan, SatCom, GPS

A: 2 Diodes 1N5450 (RS Comp 348-5460)

B: Diode 80SQ045 (RS Comp 254-0730)

Pin G: All negative battery terminals Blue

Plug: 4 pole female

Pin 1

Pin 2

12V A out Brown

12V B out Black

32

PLUGS 1-6 ZAK_M + ZAK_S1

Plug no. Pin no. Sensor cable Function Inside cable Connected to IN MAIN Connected to IN SEC
Plug 1 @ |Blue Ground Black imm? |Interface 1 no 16 (Power meas.) Interface 1 no 12
Batterycable 1|Brown 12V Ain Red 1mm? Cr1000 +12V Cr1000 +12V
Black cable 2|Black 12V Bin Red 1mm? Interface 3 no 4 Interface 2 no 4
1,5 mm2 3|Grey 12 V charge out |Grey 1,5mm?2 |Plug 2 pin 1 Plug 2 pin 1
Plug 2 & |Blue Ground Black Imm?2 |Interface 1 no 12 (Power meas.) Interface no 8
Solar panel 1|Brown Power + Grey 1,5mm?2 |Plug 1 pin 3 Plug 1 pin 3
Blue cable 2 nc
0,75 mm?2 3 nc
Plug 3 & [Shield Shield White MUX1G G (EX1)
WS&D 1|Black WS reference Orange G (P1) G (P1)
Sensor cable 2|White AZ reference Black MUX2G G8
3|Green AZ signal Blue MUX1L SE8
4|Blue AZ exitation Yellow EX1 EX1
5|Red WS signal Green P1 P1
6 nc Brown nc nc
Plug 4 @ |Drain Shield White nc nc
Tasp A 1|Red Probe Supply Orange Interface 2 no 10 Interface 1 no 16
Hygroclip + 2|Black GND Black G6 G6
Cable comp. 3|Blue nc Blue nc nc
4|Yellow Cable comp. Yellow Gl14 Gl4
9721 cable 5|Green RH signal Green MUX21H SE5
6|White T signal Brown MUX21L SE6
Plug 5 & |Drain Shield White G4 G4
Tasp B 1|Red Fan Supply Orange Interface 3no 1 Interface 2 no 1
Fan + Pt100 2|Black Fan GND Black Interface 1 no 8 Interface 1 no 4
3|Blue Pt100 Ex+ Blue SE2L (4WPB100 L) SE2L (4WPB100 L)
4|Yellow Pt100 Ex- Yellow G1 (4WPB100 G) G1 (4WPB100 G)
9721 cable 5|Green Pt100 Signal+ Green SE3 SE3
6|White Pt100 Signal- Brown SE4 SE4
Plug 6 & |Clear Shield White G (EX2) G (EX2)
SR50 Abl 1|Black Power ground Orange G (C8) G (C8)
Sensor cable 2|Red 12V Black Interface 2 no 13 Interface 1 no 18
Adress 1 3|Green SDI-12 databus |Blue Cc7 Cc7
4|White Not used Yellow G (C8) G (SW12v)
5 nc Green nc nc
6 nc Brown nc nc
Extension cable for SR50 Abl: 15m 9721 3 Campbell 4-wire Terminal Input Modules
@ |Drain 4WPB100 DIFF1 - Black EX2 (Pt100 Tasp 1)
Male plug 1|Red Female plug ZAK_M only:
2|Black 4WPB100 DIFF3 - Black EX2 (Pt100 CRN-1)
3|Blue 4WPB100 DIFF5 - Black EX2 (Pt100 Tasp 2)
4|Yellow
5|Green
6|White
Rotronic Tasp and RH wiring:
Function MP100H Col Terminal box Cable Colour Plug Pin Internal Colour
Probe Supply |Green 1|Red 4 1|Orange
RH Signal White 2|Green 4 5|Green
T Signal Brown 3|White 4 6|Brown
Cable Comp. |Yellow 4|Yellow 4 4|Yellow
GND Grey 5|Black 4 2|Black
Digital I/O nc 6|Blue (nc) 4 3|Blue (nc)
Drain 4|z White
Pt100 Ex+ Red 7|Blue 5 3|Blue
Pt100 Signal+ |Pink 8|Green 5 5|Green
Pt100 Signal- |Black 9|White 5 6|Brown
Pt100 Ex- Violet 10| Yellow 5 4|Yellow
Fan Supply |Fan Brown 11|Red 5 1|Orange
Fan GND Fan Blue 12|Black 5 2|Black
Shield nc Drain 5| White
Sensor cable 9721 cables In enclosure

33

PLUGS 7-14:

ZAK M only

Plug no. Pin no. Sensor cable Function Inside cable Connected to
Plug 7 @& |Black Ground White MUX11G
Inclinometer 1|Red +7...24V Orange Interface 2 no 16
2 nc Black nc
9720/1 cable 3|White Xout Blue MUX11H
4|Green Yout Yellow MUX11L
5 nc Green nc
6 nc Brown nc
Plug 8 @& |Clear Shield White G (EX2)
SR50 Snow 1|Black Power ground Orange G (C8)
2|Red 12V Black Interface 2 no 15
Adress 0 3|Green SDI-12 databus |Blue Cc7
4|White nc Yellow nc
5 nc Green nc
6 nc Brown nc
Plug 9 @& |Black Shield White G8
CNR-1 temp. 1 nc Orange nc
2|Blue Pt100 exitation - |Black G6 (4WPB100 G)
Sensor cable 3|Red Pt100 exitation + |Blue SE6 (4WPB100 L)
4|Yellow Pt100 signal + Yellow DIFF4H
5|Green Pr100 signal - Green DIFF4L
6 nc Brown nc
Plug 10 1|Red CM3 up signal Orange MUX13H
CNR-1 signal 2|Blue CMS3 up ref Black MUX13L
3|White CM3 down signal |Blue MUX17H
Sensor cable 4|Black CM3 down ref Yellow MUX17L
5|Grey CG3 up signal Green MUX15H
6|Yellow CG3 up ref Brown MUX15L
7|Brown CG3 down signal |Pink MUX19H
8|Green CG3 down ref Violet MUX19L
9|Shield Shield White MUX16G
Plug 11 1|Orange Signal level 1 Orange MUX4H
Thermistor 2|Black Signal level 2 Black MUX4L
string 3|Blue Signal level 3 Blue MUX6H
4|Yellow Signal level 4 Yellow MUX6L
Cable : 5|Green Signal level 5 Green MUX8H
Farnell 6|Brown Signal level 6 Brown MUX8L
123-5597 7|Pink Signal level 7 Pink MUX10H
8|Violet Signal level 8 Violet MUX10L
9|White Exitation White EX3
Plug 12 <3 Shield|Shield White
NT1400 1|White VS - Orange MUX25G
2|Red VS + Black EX3
Sensor cable 3 nc Blue nc
4 nc Yellow nc
5|Blue VO - Green MUX25L
6| Yellow VO + Brown MUX25H
Plug 13 @ |Drain Shield White nc
Tasp A 1|Red Probe Supply Orange Interface 2 no 12
Hygroclip + 2|Black GND Black MUX23G
Cable comp. 3|Blue nc Blue nc
4|Yellow Cable comp. Yellow G14
9721 cable 5|Green RH signal Green MUX23H
6|White T signal Brown MUX23L
Plug 14 @ |Drain Shield White G12
Tasp B 1|Red Fan Supply Orange nc
Fan + Pt100 2|Black Fan GND Black nc
(Fan nc) 3|Blue Pt100 Ex+ Blue SE10L (4WPB100 L)
4|Yellow Pt100 Ex- Yellow G10 (4WPB100 G)
9721 cable 5|Green Pt100 Signal+ Green SE11
6|White Pt100 Signal- Brown SE12

34

Internal ZAK_M

Function Inside cable Connected to:
Internal Pin 1 Ext. Trigger Green Interface 2 no 18
Barometer Pin 2 nc
Pin 3 GND Black G (5V)
Pin 4 12v Orange Interface 2 no 14
Pin 5 VOUT Yellow MUX1H
Internal RS232 1|Brown nc
Iridium modem 2|Red CR1000 RS232 Pin 3
3|Orange CR1000 RS232 Pin 2
NAL female 4|Yellow CR1000 RS232 Pin 6
changed to 5|Green CR1000 RS232 Pin 5
RS232 male 6|Blue CR1000 RS232 Pin 4
7|Violet CR1000 RS232 Pin 8
8|Grey CR1000 RS232 Pin 7
9|Black nc
Red + Interface 3 no 7
Black GND Interface 1 no 12
SMA Gold Iridium antenna Antenna cable
SMA Silver GPS antenna GPS in enclosure
Iridium anten. Cable RG58: RS Comp 638-9472
Gland PG11: RS Comp 444-2622
TNC male RS Comp 295-8226 Antenna
SMA male RS Comp 5120115 Modem SMA Gold
Interface 1 Power measurement
MUX9H 2 Black | | 1 Orange MUX9L
Modem G Black 4 Black I 5 mohm —— 3 nc
MUX7H 6 Yellow | | 5 Black MUX7L
Fan G Plug 5 pin 2 8 Black | 5 mohm —| 7 nc
MUX5L 10 Green | | 9 Brown MUXS5H
Solar Panel G Plug 2 pin & [12 Black | 5 mohm 11 nc
MUX3L 14 White | | 13 Yellow MUX3H
Battery G Plug 1 pin & 16 Black I 5 mohm | 15 nc
nc 18 Green/Yellow 1 17 Black POWER IN G

Interface 2 Resistors for thermistorstring measurement, SW12 V Twisted pairs ? Next time !
CR1000 SE15 1 Blue I 249 kohm 2 Orange MUX EVEN H
nc 3 | 1 kohm | 4 nc
CR1000 SE16 5 Yellow 1 1 kohm | 6 Black G16
nc 7 | 249 kohm 8 Orange MUX EVEN L
SW12V (from CR1000) 9 Red 10 Orange Taspl 12V Plug 4 pin 1
MUX 12V 11 Orange 12 Orange Tasp2 12V Plug 13 pin 1
SR50 Abl Plug 6 pin 2 13 Black 14 Orange Barometer Pin 4 (12V)
SR50 Snow Plug 8 pin 2 15 Black 16 Orange Incl. Plug 7 pin 1
nc 17 18 Green Barometer Pin 1 (Ext. Trigger)
Interface 3 Fan Supply, Modem supply
GND (12V) (Black) 2|IP521 Fan Supply 112V B OUT Fan Plug 5 pin 1 (Orange)
12V B IN Plug 1 pin 2 (Red) 4 3|NC
C8 (Yellow) 6 5|NC
GND To 2 (Black) 8|IP521 Modem supply 7|12V B OUT Modem SYN-DC + (Red)
12V B IN To 4 (Orange) 10 9|NC
C6 (Blue) 12 11|NC
NC 14 13|NC
NC 16 15{NC
NC 18 17|{NC
Internal connections: CR1000 Colour MUX Function
SE13 Orange ODD H Signals to CR1000
SE14 Yellow ODD L do.
G14 Black G COMMON do.
G (SW12V) Black GND
C1 Blue MUX RES Reset
c2 Brown MUX CLK Clock
POWER IN G Black 1 mm?2 Interface 1 no 17
POWER IN 12V |Red 1mm?2 Plug 1 pin 1
Cathode (Short leg) G (C5) Diode RS Comp 564009 C5 Anode (Most metal)

Main Ground:

Enclosure Ground Lug - CR1000 Ground Lug - AM16/32 Ground Lug

All connections 2,5 mmz2 green/yellow

35

Internal ZAK_S1

\ Function Connected to:
Internal Red Power 12 V Relay 2 no 14
Garmin GPS Black Power ground G (12v)
Yellow Remote On/off G (12v)
Blue Port 1 data in nc
White Port 1 data out C4
Grey PPS nc
Green Port 2 data in nc
Violet Port 2 data out nc
Drain Shield G (12V)
Interface 1 Power measurement
SE13 Yellow 2 | 5 mohm T 1|SE14 White
Fan G Plug 5 pin 2 (Black) 4 I I 3[nc
SE12 Green 6 | 5 mohm I 5|SE11 Blue
Solar Panel G Plug 2 pin & 8 I J 7|nc
SE10 White 10 | | 9|SE9 Yellow
Battery G Plug 1 pin & 12 I 5 mohm — 11|CR1000 GROUND LUG
nc 14 ! 13]G BOLT Enclosure
H.Clip Plug 4 pin 1 Orange 16 | | 15|nc
SR50 Abl Plug 6 pin 2 Black 18 — | 17|SW12v from CR1000 (Red 1 mm?)
Interface 2: Fan, GPS supply:
GND (12V) (Black) 2|IP521 Fan Supply 1|12V B OUT Fan Plug 5 pin 1 (Orange)
12V B IN Plug 1 pin 2 (Red) 4 3|NC
C8 (Yellow) 6 5|NC
GND To 2 (Black) 8[IP521 Modem supply 7(12v B OUT GARMIN (Red)
12V B IN To 4 (Orange) 10 9[NC
C6 (Blue) 12 11|NC
NC 14 13|NC
NC 16 15[NC
NC 18 17(NC
POWER IN G nc
POWER IN/Red 1mm?2 Plug1pinl
Cathode (Short leg) G (C5) Diode RS Comp 564009 C5 Anode (Most metal)

36

Appendix D — Datalogger program

(Michele Citterio, GEUS)

37

"CR1000 Program for the GlacioBasis GEUS AWSs rev. 1.4M (23/03/2008).
"Written by Michele Citterio, GEUS, Copenhagen.

SequentialMode

A HFF WHEN CONFIGURING A NEW ZACK-STYLE AWS, YOU DON®"T NEED TO EDIT ANYTHING

o o o o o o T T S R R R R R R R AR R S Sk Sk kT R R S S R R SRR R R R R R SR SR R R SR R R R R SR R SR R R R R S R R

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

AppendInstantaneous = True

Hourslnstantaneous = 3" in hours 3

RemoteReconfig = False“unfinished, don"t set True

BeginOfSummer = 90" in days

BeginOfWinter = 305" in days

ScanRate = 600600 " in sec (can"t be shorter than 15 + 2*TxTimeout + 60)
MemSaveRate = 1"2 "in numebr of scans. This is both the averaging and the

SummerTxRate = 6"1 "in numebr of scans. This iIs both the averaging and the
WinterTxRate = 184 "in numebr of scans (=1440). This is both the averagin
SummerGPSrate = 3"1 "in number of scans (in this revision it must be an in

WinterGPSrate = 18"1 "in number of scans (in this revision it must be an i
SummerTableBuffer 72

WinterTableBuffer 24

DiagnosticsRate = 24" (=36) in hours

TermStringSz = 8" no. of thermistors in the thermistor sting

LoBattThre = 11.5" the threshold in V for Low_Batt to be set (entering pow
LoBattResHyst = 0.5 "the hysteresis in V above LoBattThre for resetting Lo
FastScanReps = 10 "how many times to run Measure routine in fastscan mode

FastScanRate = 20 “"how often to run the Measure routine when in fastscan m
GPSType = "N" "use "G" for Garmin, "N" for the one integrated in the NAL I
AdvanceFanStart = 2 "in number of FastScans. How much in advance of the sc
AdvanceGPSstart = 120"20"in sec. Increase!!

TxStringMaxLen = 420 "may be increased with future releases of the Iridium
TxMaxInitAttempts = 3" max 3, more doesn"t make any sense and the wasted t
TxTimeout = 30 " in sec, before the Tx sub times out. If service becomes a
SnowheightSR50address = 1" SDI12 address

AblationSR50address = 0" SDI12 address

GarminWarmup = 3" in seconds (doesn"t mean it will then output a fix, but

SR50Warmup = 3" iIn seconds

HygroClipWarmup = 4" warm-up time needed by the HygroClip module after pow
NT1400Warmup = 5" time required for the pressure transmitter before it is

GarminBaudRate = 1200" Damn Garmin!!!lll Some units come preset at 1200 bau

A HHA WHEN CONFIGURING A NEW ZACK-STYLE AWS, YOU DON®"T NEED TO EDIT ANYTHING

o o o o o o S S R R R S R R R R AR R S Sk ko S S S S S R R R R R R R R R SR R R R R R R R R S SR R R R R R R R R

Public WinterDataTerminator As String *3

Public SummerDataTerminator As String *3

Public InstantDataTerminator As String *3
Public DiagnDataTermninator As String *3

Public TxAllowed As Boolean

Public FanPowerDueForSwOff As Boolean

Public TablelnstantaneousString As String * 100
Public TxPowerDueForSwOff As Boolean

Public GarminlnitOk As Boolean

Public ConfigFile_H As Long

Public ConfigArraylT

"Public DiagInfieldWarning As Boolean®"check for it not being set before field de
Public NGPSFLAG As Boolean

Public GGPSFLAG As Boolean

Public LoggerOSrev

Public TimersuUnit

Public TimersUnitMult

Public Diag

38

Public SkippedScans

Public SkippedSlowScansl, SkippedSlowScans2
Public GPSinUse As String * 1

Public TimeSincel2Von

Public TimeSinceVx3on

Public LastSuccessfulMOMSN

Public SendRecordBacklog

Public SendRecordIT

Public TxTimeTaken

Public TxSendAttempts

Public TxTimeoutTimer

Public TxInitilizeAttempt

Public SBDloffset

Public SBDIsentence As String * 40

Public SBDIparsed(6) As String *10

Public SBDsession As Boolean

Public TxInitializeOk As Boolean

Public Strindex

Public TxSendSuccess As Boolean

Public SentWithSuccess

Public TxMObuffCleared As Boolean

Public TxMOuploaded As Boolean

Public TxRSSI1®" As String

Public TxSvcAvail As Boolean

Public TxNotifyON As Boolean

Public RS232EchoOk As Boolean

Public TxTypeNAL960x As Boolean

Public TxModuleATok As Boolean

Public TxModuleRFon As Boolean

Public TxModuleReply As String * 41

"Public TxSerialBuffer As String * 401"set as needed
"Public TxPowerOn As Boolean

Public TxModuleGPSPowerOn As Boolean

Public TxBufferString As String * TxStringMaxLen + 1 +80"to hold the null termin
Public TxStringUnstripped As String * TxStringMaxLen + 1 +80"sorry, there"s some
Public TxString As String * TxStringMaxLen + 1"to hold the null termination
Public StringStripperlT

Public StripStringStart

Public StringChar As String * 1

Public MeasCycleDone As Boolean

Public Cbhstatus®™ As Boolean

Public ChstatusPrev® As Boolean

Public LastFastScan

Public temp

Public Currents(4)

Alias Currents(l) = BatteryCurrent
Alias Currents(2) = SolarPanelCurrent
Alias Currents(3) = FanCurrent

Alias Currents(4) = TxGPSCurrent

Public MPFLAG As Boolean

Public FastScanSwitch As Boolean

Public FastScanCount

Public FastScanMode As Boolean

Public RTime(9) “WARNING! this is used as a temporary variable in many different

Alias rTime(1l) = Year
Alias rTime(2) = Month
Alias rTime(3) = DayOfMonth
Alias rTime(4) = Hour
Alias rTime(5) = Minute
Alias rTime(6) = Second
Alias rTime(7) = uSecond
Alias rTime(8) = WeekDay
Alias rTime(9) = DayOfYear

39

Public IsSummer As Boolean

Public Batt Voltl

Public Batt_VoltF

Public Batt_V_Drop

Public Low Batt As Boolean

Public Asp_fan_on As Boolean

Public Aspirated_meas As Boolean

Public PTemp_C

Public SR50_SnowHeight(2)

Alias SR50_SnowHeight(1)=SnowHeight *"sr50
Alias SR50_SnowHeight(2)=SnowHeightQuality ""sr50
Public SR50_Ablation(2)

Alias SR50_Ablation(l)=Ablation ""sr50
Alias SR50_Ablation(2)=AblationQuality
Public Ablation_meter ""sr50

Public temptemp,temptemptemp

"Public WaterColumnPressure

Public WS_ms ""Young

Public WindDir ""Young

Public BP_mmHg

Public AS T "Air temperature, ventilated shield
Public AS_RH "Relative humidity, ventilated shield
Public AS _Pt100"PT100 air temperature, ventilated shield
Public US T "Air temperature, ventilated shield
Public US_RH "Relative humidity, ventilated shield
Public US_Pt100"PT100 air temperature, ventilated shield
Public templ "“remove then

Public Xtilt

Public Ytilt

Public TermStringT(8)

Public CNR1_SWin

Units CNR1_SWin = mV

Public CNR1_SWout

Public CNR1_LWin

Public CNR1_LWout

Public CNR1_Pt100

Dim SW12Von As Boolean

Public _MUXRES

Dim MUXCLK As Boolean

Dim it

"GPS stuff

"Public LatL As Long

"Public SaveGPSFix

Public BestHDPseen

Public sBestHDPseen

"Public GPGGAoffset

"Public GPSData As String * 301

Public GPGGAsentence As String * 72

Public PreParseStr(18) As String * 15

Alias PreParseStr(7) = PreQual

Alias PreParseStr(9) PreHDP

Public PreQual FP

Public PreHDP_FP

Public ParseStriIT

Public ParseStr(18) As String * 15

Alias ParseStr(1) = GPGGA
Alias ParseStr(2) = TIME
Alias ParseStr(3) = LAT
Alias ParseStr(4) = HEMINS
Alias ParseStr(5) = LONGI
Alias ParseStr(6) = HEMIEW
Alias ParseStr(7) = QUAL

40

Alias ParseStr(8) = NUMSATS
Alias ParseStr(9) = HDP
Alias ParseStr(10) = ALTDE
Alias ParseStr(11) = ALTUNIT
Alias ParseStr(12) = GIODAL
Alias ParseStr(13) = GEOUNIT
Alias ParseStr(14) = AGE
Alias ParseStr(15) = DIFFREF
Alias ParseStr(16) = ASTERISK
Alias ParseStr(17) = CHCKSUM
Alias ParseStr(18) = CRLF

Units Batt_Voltl=Volts
Units Batt_VoltF=Volts
Units Batt_V_Drop=Volts
Units PTemp_C=Deg C

Units WS_ms=meters/second
Units WindDir=Degrees
uUnits BP_mmHg=mV (mmHg)
"Units WaterColumnPressure=mv/V
Units AS_T=mV

Units AS_RH=mV

Units AS_Pt100=mV?

Units US_T=mV

Units US_RH=mV

Units US_Pt100=mV?

Units Xtilt=mV

Units Ytilt=mV

Units TermStringT(8)=Deg C
Units CNR1_SWin=mV

Units CNR1_SWin =mV

Units CNR1_SWout=mV

Units CNR1_LWin=mV

Units CNR1_LWout=mV

Units CNR1_Pt100=mV

"Define Data Tables

DataTable (InstantaneousTable,True,l)
Sample(1,BP_mmHg,FP2)

Sample(1,AS_Pt100,FP2)

Sample(1,AS_T,FP2)

Sample(1,AS_RH,FP2)

Windvector (1,WS_ms,WindDir,FP2,False,0,0,0)
Sample(l, InstantDataTerminator,String)
EndTable

DataTable(TxBufferTable,True,SummerTableBuffer)
Sample(1,TxBufferString, String)
EndTable

DataTable(TableSummerTx,True,1,) "SummerTableBuffer)"then, size = 1
Datalnterval (0O,SummerTxRate*ScanRate,Sec,1)
Average(1,BP_mmHg,FP2,False)

" StdDev(1,BP_mmHg,FP2,False)
Average(1,AS_Pt100,FP2,False)

" StdDev(1,AS_Pt100,FP2,False)
Average(1,AS_T,FP2,False)"AS_ = Rotronics Aspirated Shield
" StdDev(1,AS _T,FP2,False)

Average(1,AS_RH,FP2,False)® This is conceptually wrong

" StdDev(1,AS_RH,FP2,false)® This is conceptually wrong
WindvVector (1,WS_ms,WindDir,FP2,False,0,0,0)

FieldNames("'WS_ms_S_WVT,WindDir_D1 WVT,WindDir_SD1_WVT'™)*From manual :"Mean hori

41

Average(1,CNR1_SWin,FP2,False)

" StdDev(1,CNR1_SWin,FP2,False)
Average(1,CNR1_SWout,FP2,False)

" StdDev(1,CNR1_SWout,FP2,False)
Average(1,CNR1_LWin,FP2,False)

* StdDev(1,CNR1_LWin,FP2,False)
Average(1,CNR1_LWout,FP2,False)

" StdDev(1,CNR1_LWout,FP2,False)
Average(1,CNR1_Pt100,FP2,False)

" StdDev(1,CNR1_Pt100,FP2,False)
Sample(1,SnowHeight,FP2)
Sample(1,SnowHeightQuality,FP2)
Sample(1,Ablation,FP2)
Sample(1,AblationQuality,FP2)
Average(l,Ablation_meter,FP2,False)
" StdDev(1,Ablation_meter,FP2,False)

Average(8,TermStringT(),FP2,False)""check if ok this way of passing arrays

FieldNames("'Thermistor_1,Thermistor_2,Thermistor_3,Thermistor_4,Thermistor_5,Th

Average(l,Xtilt,FP2,False)

" StdDev(l1,Xtilt,FP2,False)
Average(l,VYtilt,FP2,False)

" StdDev(l1,Ytilt,FP2,False)
Sample(1,TIME,String)
Sample(1,LAT,String)
Sample(1,LONGI,String)
Sample(1,ALTDE,String)
Sample(1,NUMSATS, String)
Sample(1,HDP,String)
Average(l,currents(3),FP2,False)
Average(1,US_Pt100,FP2,False)

" StdDev(1,US_Pt100,FP2,False)
Average(1,US_T,FP2,False)"US_ = Rotronics Un-Aspirated Shield
" StdDev(1,US T,FP2,False)
Average(1,US_RH,FP2,False)

" StdDev(1,US_RH,FP2,false)
Maximum(1,Batt_Voltl,FP2,False,False)
Minimum(1,Batt_VoltF,FP2,False,False)
Average(l,Batt_V_Drop,FP2,False)
Sample(1,SummerDataTerminator,String)
EndTable

DataTable(TableWinterTx,True,1) *WinterTableBuffer)"then, size = 1
Datalnterval (0O,WinterTxRate*ScanRate,Sec,1)
Average(1,BP_mmHg,FP2,False)

" StdDev(1,BP_mmHg,FP2,False)
Average(1,AS_Pt100,FP2,False)

" StdDev(1,AS_Ptl100,FP2,False)
Average(1,AS_T,FP2,False)"AS_ = Rotronics Aspirated Shield
" StdDev(1,AS _T,FP2,False)

Average(1,AS_RH,FP2,False)® This is conceptually wrong

" StdDev(1,AS_RH,FP2,false)® This is conceptually wrong
WindvVector (1,WS_ms,WindDir,FP2,False,0,0,0)

FieldNames("'WS_ms_S_WVT,WindDir_D1 WVT,WindDir_SD1_WVT'™)*From manual :"Mean hori

Average(1,CNR1_SWin,FP2,False)

" StdDev(1,CNR1_SWin,FP2,False)
Average(1,CNR1_SWout,FP2,False)
" StdDev(1,CNR1_SWout,FP2,False)
Average(1,CNR1_LWin,FP2,False)

" StdDev(1,CNR1_LWin,FP2,False)
Average(1,CNR1_LWout,FP2,False)
" StdDev(1,CNR1_LWout,FP2,False)
Average(1,CNR1_Pt100,FP2,False)
" StdDev(1,CNR1_Pt100,FP2,False)

42

Sample(1,SnowHeight,FP2)

Sample(1,SnowHeightQuality,FP2)

Sample(1,Ablation,FP2)

Sample(l1,AblationQuality,FP2)
Average(l,Ablation_meter,FP2,False)

* StdDev(1,Ablation_meter,FP2,False)
Average(8,TermStringT(),FP2,False) " “check if ok this way of passing arrays
FieldNames("'Thermistor_1,Thermistor_2,Thermistor_3,Thermistor_4,Thermistor_5,Th
Average(l,Xtilt,FP2,False)

" StdDev(1,Xtilt,FP2,False)

Average(l,VYtilt,FP2,False)

" StdDev(l1,Ytilt,FP2,False)

Sample(1,TIME,String)

Sample(1,LAT,String)

Sample(1,LONGI,String)

Sample(1,ALTDE, String)

Sample(1,NUMSATS, String)

Sample(1,HDP,String)

Average(1,currents(3),FP2,False)
Average(1,US_Pt100,FP2,False)

" StdDev(1,US_Pt100,FP2,False)

Average(1,US_T,FP2,False)"US_ = Rotronics UN-Aspirated Shield
" StdDev(1,US_T,FP2,False)

Average(1,US_RH,FP2,False)

" StdDev(1,US_RH,FP2,false)
Maximum(1,Batt_Voltl,FP2,False,False)
Minimum(1,Batt_VoltF,FP2,False,False)
Average(l,Batt_V_Drop,FP2,False)
Sample(l,WinterDataTerminator,String)

EndTable

DataTable(TableMem,True,-1)

Datalnterval (0,MemSaveRate*ScanRate,Sec,100) "are those many lapses needed?
Cardout(0,-1)

Average(1,BP_mmHg, IEEE4,False)

Average(1,AS_Pt100, IEEE4,False)

Average(1,AS_T, IEEE4,False)"AS_ = Rotronics Aspirated Shield
Average(1,AS_RH, IEEE4,False)

WindVector(1,WS_ms,WindDir,FP2,False,0,0,0)
FieldNames("'WS_ms_S WVT,WindDir_D1 WVT,WindDir_SD1 WVT'™)"From manual :""Mean hori
Average(1,CNR1_SWin, IEEE4,False)

Average(1,CNR1_SWout, IEEE4,False)

Average(1,CNR1_LWin, IEEE4,False)

Average(1,CNR1_LWout, IEEE4,False)

Average(1,CNR1_Pt100, IEEE4,False)

Sample(1,SnowHeight,FP2)

Sample(1,SnowHeightQuality,FP2)

Sample(1,Ablation,FP2)

Sample(1,AblationQuality,FP2)

Average(l,Ablation_meter,FP2,False)

Average(8,TermStringT(), IEEE4,False) " "check if ok this way of passing arrays
FieldNames("'Thermistor_1,Thermistor_2,Thermistor_3,Thermistor_4,Thermistor_5,Th
Average(l1,Xtilt,FP2,False)

Average(l,Ytilt,FP2,False)

Sample(1,TIME,String)

Sample(1,LAT,String)

Sample(1,HEMINS,String)

Sample(1,LONGI,String)

Sample(1,HEMIEW,String)

Sample(1,ALTDE,String)

Sample(1,ALTUNIT,String)

Sample(1,GIODAL,String)

Sample(1,GEOUNIT,String)

43

Sample(1,QUAL,String)

Sample(1,NUMSATS, String)

Sample(1,HDP,String)

Average(1,US_Pt100, IEEE4,False)

Average(1,US_T, IEEE4,False)"US_ = Rotronics UN-Aspirated Shield
Average(1,US_RH, IEEE4,False)

Average(1l,PTemp_C, IEEE4,False)

Maximum(1,Batt_Voltl, IEEE4,False,False)

Minimum(1,Batt_VoltF, IEEE4,False,False)
Average(4,Currents(),FP2,False)
FieldNames("'Battery_current_avg,Solar_Panel_current_avg,Fan_current_avg, Tx+GPS_
EndTable

DataTable(TableDiagnostics, True, -1)
Datalnterval (0O,DiagnosticsRate,hr,100)
CardOut(0,-1)
Sample(l,status.StationName,String)
Sample(l,status.StartTime,NSEC)
Sample(l,status.RunSignature,uint2)
Sample(1,LoggerOSrev, String)
Sample(l,status.Lowl2VCount,Uint2)
Average(1,PTemp_C,FP2,False)
StdDev(1,PTemp_C,FP2,False)
Average(l,Batt_Voltl,FP2,False)
Average(l,Batt_VoltF,FP2,False)
Average(l,Batt_V_Drop,FP2,False)
Maximum(1,Batt_Voltl,FP2,False,False)
Minimum(1,Batt_VoltF,FP2,False,False)
Average(4,Currents(),FP2,False)
FieldNames(''Battery_current_avg,Solar_Panel_current_avg,Fan_current_avg, Tx+GPS__
StdDev(4,Currents(),FP2,False)
FieldNames('Battery_current_std,Solar_Panel_current_std,Fan_current_std,Tx+GPS_
Totalize(l,TxInitializeOk,FP2,False)
Totalize(l,GarminlnitOk,FP2,False)
Sample(1,SentWithSuccess,FP2)
Sample(1,SendRecordBacklog, FP2)
Sample(l1,DiagnDataTermninator,String)
EndTable

"Declaration of subroutines

Sub TxModulelnit

IT NOT (SummerTxRate OR WinterTxRate OR (GPSType="N"")) Then ExitSub
TxInitializeOk = False

IT NOT TxInitializeOk Then

SerialOpen(ComRS232,19200,0,0,400)

SerialOut(ComRS232,"A™,""",25,20)" to allow 5 secs for the Iridium Module to
For TxInitilizeAttempt = 1 To TxMaxInitAttempts

" TxInitializeOk = False

- ExitFor

" EndIf*

SerialOut(ComRS232, "TE1"+CHR(13)+CHR(10),""*,1,10) "should be default but d
SerialOut(ComRS232,"ATV1"+CHR(13)+CHR(10),"",1,10)" FIXME!! Then RS232Echo
IT SerialOut(ComRS232,"AT""+CHR(13)+CHR(10), ""OK"+CHR(13)+CHR(10),1,10) Then
If SerialOut(ComRS232," " ATI14"+CHR(13)+CHR(10), " IRIDIUM 9600 Family"+CHR(13)
"Delay(0,1,sec) "\RREEMMOOVVEE!I 111

"SerialFlush(ComRS232) "needed to clean up the rest of the unused answer to
IT TxModuleATok AND True AND TxTypeNAL960x Then "FIXME!! RS232EchoOk
TxInitializeOk = True

ExitFor

Else

TxInitializeOk = False

44

EndIf

Next
SerialClose(ComRS232)
EndIf

EndSub

Sub IridiumTx

IT NOT (SummerTxRate OR WinterTxRate OR (GPSType="N'")) Then ExitSub
Call TxModulelnit

IT NOT TxInitializeOk Then

SerialClose(ComRS232)

ExitSub

Endlf

SerialOpen(ComRS232,19200,0,0,400)

If SerialOut(ComRS232, " AT*S=1"+CHR(13)+CHR(10),"OK"+CHR(13)+CHR(10),1,10) Then
IT SerialOut(ComRS232,"AT+SBDD0O"+CHR(13)+CHR(10),"0",1,10) Then TxMObuffCleare
If SerialOut(ComRS232, " AT+SBDWT"'+CHR(13)+CHR(10),""READY" + CHR(13) + CHR(10),
SerialOutBlock (ComRS232,TxString+CHR(13),Len(TxString)+10)

IT SerialOut(ComRS232,"","0"+CHR(13)+CHR(10),1,100) Then TxMOuploaded = True
EndIf

IT NOT (TxMObuffCleared AND TxMOuploaded AND TxModuleRFon) Then
SerialClose(ComRS232)

ExitSub

Endlf

Timer(1,sec,2)

Do

"\GPcl = GPcl+1

TxTimeoutTimer = Timer(1,sec,4)

IT TxTimeoutTimer >= TxTimeout Then "the = is needed because the timer has a
Timer(1,sec,3)

SerialClose(ComRS232)

ExitSub

Endlf

SerialFlush(ComRS232)

IT SerialOut(ComRS232,"AT+CIER=1,1,1,0"+CHR(13)+CHR(10),"OK"+CHR(13)+CHR(10)
Do

TxTimeoutTimer = Timer(1,sec,4)

IT TxTimeoutTimer >= TxTimeout Then “"the = is needed because the timer has
Timer(1,sec,3)

SerialClose(ComRS232)

ExitSub

Endlf

Serial In(TxModuleReply,ComRS232, TxTimeout*100, CHR(13)+CHR(10),15)" put h
IT InStr(1,TxModuleReply,”+CIEV:0,",4) Then TxRSSI = Mid(TxModuleReply, In
IT InStr(1,TxModuleReply,"+CIEV:1,",4) Then TxSvcAvail = Mid(TxModuleReply
Loop Until TxSvcAvail AND TxRSSI > O

IT SerialOut(ComRS232,"AT+CIER=0,1,1,0"+CHR(13)+CHR(10),"OK"+CHR(13)+CHR(10)
SerialFlush(ComRS232)

IT NOT TxAllowed Then ExitDo

TxSendAttempts=TxSendAttempts+1

SBDsession = True®\

SerialOut(ComRS232, " AT+SBDI"+CHR(13),"",1,10)
SerialOut(ComRS232,"","+SBDI1:"",1,6000)" WAIT up to 1 minute for the outcome
SerialIn(TxModuleReply,ComRS232, 0, 13, 40)
SplitStr(SBDIparsed(1),TxModuleReply,CHR(44),6,0)

IT SBDIparsed(1)="1" AND SBDIparsed(2) <> LastSuccessfulMOMSN Then
TxSendSuccess = True

SentWithSuccess = SentWithSuccess + 1

LastSuccessTulMOMSN = SBDIparsed(2)

45

Else

TxSendSuccess = False
TxSvcAvail = false

TxXRSSI = 0

Endlf

SBDsession = False"\

Loop Until TxSendSuccess" actually, it keeps trying until TxTimeout
TxTimeTaken = TxTimeoutTimer
Timer(1,sec,3)
SerialClose(ComRS232)

EndSub

" The main program. On datalogger power-on and after a few seconds needed for th
" lights the LED for 3 seconds to notify that the station is up and running. The
" the only SlowSequence Scan.

BeginProg

"light the LED for 2 seconds (“'main program started™)
PortSet(5, true)

Delay(0,500,msec)

PortSet(5, false)

"SetStatus ("'USRDriveSize'",8192)" for use with OpenFile when implementing bina

Low_Batt = True*will be cleared after the Ffirst scan if battery is ok. Prevent
FastScanMode = False® True

FastScanCount = FastScanReps

IsSummer = False

TxAllowed = True

WinterDataTerminator=""IW"
SummerDataTerminator=""1S"
InstantDataTerminator=""11"
DiagnDataTermninator="1D"

LoggerOSrev = Right(Status.OSVersion,2)" it assumes that Cambell will keep num
IT LoggerOSrev < 14 Then TimersUnitMult = 1000000 Else TimersUnitMult = 1"Here

Battery(Batt_Voltl)
" If Batt_Voltl > LoBattThre + LoBattResHyst Then Low_Batt = False

GPSinUse = UpperCase(GPSType)
BestHDPseen = 100
sBestHDPseen = 100

TxInitializeOk=False
PortGet(C5status,8)
SerialOpen(com2,GarminBaudRate,0,0,1000) "due to a possible bug in the CR1000 O

. kX ** * % * %

The main Scan calls the Measure subroutine to do the actual measurement job, t
" Iridium module. Depending on which GPS receiver is being used (the Trimble or

" It can wait for the GPS of the Iridium module to return a valid position and t
" proceeds issuing the CallTable commands for the TableMem AND for the TableTxXx
season. Then if needed it acesses the relevant TableTxXxxxxx, assembles the me
" module, uploads it, initiates the SBD transfer by sending the AT+SBDRB or AT+S
" until either it succeeds or the Max_SBD_Attempts is reached. Finally it calls

o o R R R R AR AR S Sk Sk ko S S S S S S S S R T S R S S S R SR R R R R R R R R S S R R R R R R R

Scan(FastScanRate,Sec,1,0)

46

" If Batt_Voltl > LoBattThre + LoBattResHyst Then Low_Batt = False

"Initial Datalogger Battery Voltage measurement Batt_Volt (do this before turn
" If Batt_Voltl = -999 Then Battery(Batt_Voltl)

PulsePort(5,10000)

"Excites Vx3 to allow the NT1400 to thermally stabilize

IT (Timelntolnterval (0,ScanRate,sec) OR FastScanMode) Then
ExciteV(Vx3,2500,0)

Timer(3,sec,2)

TimeSinceVx3on = Timer(3,sec,4)

Else

Timer(3,sec,3)"we won"t need to also switch Vx3 off explicitly: it is done
EndIf

"deals with the fastscan state

" C5statusPrev = Cbstatus"to deal with the hardware FastScan switch in a saf
" "PortsConfig(&B1000,&B0000)

" PortGet(C5status,5) "Readl0(C5status, &B10000)*

" If C5status AND NOT C5statusPrev Then FastScanMode = True

" 1T C5statusPrev AND NOT Cbstatus Then

" FastScanMode = False
" LastFastScan = True
" EndIf

IT FastScanMode AND FastScanCount = 0 Then FastScanCount = FastScanReps

If NOT FastScanMode AND FastScanCount > O Then FastScanCount = 0O

If FastScanMode AND FastScanCount > 0O Then FastScanCount = FastScanCount - 1
If FastScanMode AND FastScanCount 0 Then LastFastScan = True

If FastScanMode AND FastScanCount 0 Then FastScanMode = False

"Starts the Rotronics aspirated shield fan
IT (Timelntolnterval (ScanRate-AdvanceFanStart*FastScanRate,ScanRate,sec) OR
IT Batt Voltl = -999 Then Battery(Batt_Voltl)
IT NOT Low_Batt Then
PortSet(8, true)
Asp_fan_on = True
Endlf
Endlf

"if needed, it powers up the Tx module and initializes its integrated GPS re
I (GPSinUse = "G" OR GPSinUse = "N") Then
IT Batt_Voltl = -999 Then Battery(Batt_Voltl)
IT NOT Low_Batt Then
IT IsSummer Then
IT (Timelntolnterval (SummerGPSrate*ScanRate-AdvanceGPSstart,SummerGPSr
IT (GPSinUse = "'G'") Then
PortSet(6,True)
TxModuleGPSPowerOn = True
"\"SerialOpen(com2,4800,0,0,150)"due to a possible bug in the CR10
SerialFlush(Com2)
GPGGAsentence=""
Serialln (GPGGAsentence,COM2,GarminWarmup * 100,-1,10)
"\"SerialClose(com2)
IT Len(GPGGAsentence)>0 Then
GarminInitOk = True
Else
GarminlnitOk = False
Endlf
Endlf
IT (GPSinUse

“N') Then

a7

temptemp=temptemp+1

PortSet(6,True)

TxModuleGPSPowerOn = True

SerialOpen(ComRS232,19200,0,0,100)

SerialFlush(ComRS232)

Call TxModulelnit

IT TxInitializeOk Then
SerialOut(ComRS232, " AT*S=0""+CHR(13)+CHR(10),""",1,10)
SerialOut(ComRS232,"AT+PP=1"+CHR(13)+CHR(10),""",1,10) "should be
SerialOut(ComRS232, "AT+PNAV=1"+CHR(13)+CHR(10),"",1,10) "should b
SerialClose(ComRS232)

EndIf

Endlf

IT NOT(GarminlnitOk OR TxInitializeOk) Then

TxPowerDueForSwOff = True

EndIf

Endlf

Else"else it is winter

IT (Timelntolnterval (WinterGPSrate*ScanRate-AdvanceGPSstart,WinterGPSr
IT (GPSinUse = "G'") Then

PortSet(6,True)

TxModuleGPSPowerOn = True

"\"SerialOpen(com2,4800,0,0,150)"due to a possible bug in the CR10
SerialFlush(Com2)

GPGGAsentence="""

Serialln (GPGGAsentence,COM2,GarminWarmup * 100,-1,10)
"\"SerialClose(com2)

IT Len(GPGGAsentence)>0 Then

GarminInitOk = True

Else

GarminlnitOk = False

Endlf

Endlf

IT (GPSinUse = "N') Then

temptemp=temptemp+1

PortSet(6,True)

TxModuleGPSPowerOn = True

SerialOpen(ComRS232,19200,0,0,100)

SerialFlush(ComRS232)

Call TxModulelnit

If TxInitializeOk Then

SerialOut(ComRS232, ""AT*S=0"+CHR(13)+CHR(10),""",1,10)
SerialOut(ComRS232, "AT+PP=1"+CHR(13)+CHR(10),""",1,10) "should be
SerialOut(ComRS232, "AT+PNAV=1"+CHR(13)+CHR(10),"",1,10) "should b
SerialClose(ComRS232)

Endlf

EndIf

IT NOT(GarminlnitOk OR TxInitializeOk) Then

TxPowerDueForSwOff = True

EndIf

EndIf

Endlf

EndIf

EndIf

"Executes the measurements *

o o o R Sk o Sk o ok o ok o o S S S S kR S R S Sk R S o R S o o R R R AR AR R SR SR Sk Rk T S S S S S S S S o S e

IT Batt_Voltl = -999 Then Battery(Batt_Voltl)

IT (FastScanMode AND FastScanCount > 0) OR Timelntolnterval (0,ScanRate,sec)
SW12(True) "Enabling switched 12V supply
SW12Von = True

Timer(2,sec,2)
TimeSincel2Von = Timer(2,sec,4)

"Do the measurements
"\"SerialOpen(com2,4800,0,0,150)"due to a possible bug in the CR1000 OS, i

"Wiring Panel Temperature measurement PTemp_C:
PanelTemp(PTemp_C, 50HZz)
ExciteV(Vx3,2500,0) "This MUST be right after any bridge, P107 and Pa

"get a feel of the season...
RealTime(RTime)
IT DayOfYear >= BeginOfSummer AND DayOfYear < BeginOfWinter Then IsSummer = Tr

"open COM2 for the Garmin GPS (com2 gets closed when SW12 goes off, so thet
" SerialOpen(com2,4800,0,0,2000)

"do now whatever needs the 12V switched supply to be ON but doesn"t use the

"Enables the MUX by bringing its _RES input high and then explicitly resets t
PortSet(1,1) “brings the _RES input on the MUX high (means the MUX is in ope
Delay(0,1,sec) "waits for the MUX to be fully awake after SW12V came up and _R
PulsePort(1,20000) “pulses low the _RES input on the MUX for 20 ms

"advances to MUX differential channel 1 and measures Young Wind Direction Sens
"(optimized solution to to share the same MUX position). So, first measure Win
PulsePort(2,5000)

Delay(0,20,msec)" allows for settling time

PulseCount(WS ms,1,1,1,1,0.098,0)
BrHalf(WindDir,1,mv2500,14,1,1,2500,True,0,_50Hz,355,0) " "consider using fast
ExciteV(Vx3,2500,0)"This MUST be right after any bridge, P107 and Pa

I WindDir>=360 Then WindDir=0

" _..then measure BP_mmHg from the CS100. This must never occur less than 1 se
VoltSe(BP_mmHg,1,mv2500,13,1,0, 50Hz,0.2,600.0)
BP_mmHg=BP_mmHg*0.75006

"cycles through and measures the 8 termistors in the termistor string and the
For it = 1 To TermStringSz Step 2

"first measure the thermistors
PulsePort(2,5000)" COULD THIS REPLACE THE FOLLOWING DELAY??7?
Delay(0,20,msec)" allows for settling time -> don"t remove or measures gets
Therm107 (TermStringT(it),1,15,Vx3,20000,_50Hz,1.0,0)
Therml107 (TermStringT(it+1),1,16,Vx3,20000, 50Hz,1.0,0)
" Delay(0,300,msec)
"then measure the current shunts located at the same MUX position
VoltDiff (Currents((it+1)/2),1,mV7_5,7,True,0, 50Hz,200,0)"200 is for a sh
Next
ExciteV(Vx3,2500,0)"This MUST be right after any bridge, P107 and Pa

"advances to MUX differential channel 11 and measures both the Xtilt and Ytilt
PulsePort(2,5000)

Delay(0,20,msec)

VoltSe(Xtilt,1,1,13,1,0, 50Hz,1,0)

VoltSe(Ytilt,1,1,14,1,0,_50Hz,1,0)

"advance the MUX to measure the 4 radiation signals from the CNR1 (can too be
PulsePort(2,5000)

49

Delay(0,20,msec)" allows for settling time ... needed??

VoltDiff (CNR1_SWin,1,mvV25,7,True,0,_50Hz,1,0)" may go out of range with ver
PulsePort(2,5000)

Delay(0,20,msec)" allows for settling time ... needed??

VoltDiff (CNR1_LWin,1,mV7_5,7,True,0, 50Hz,1,0)" may go out of range with ve
PulsePort(2,5000)

Delay(0,20,msec)" allows for settling time ... needed??

VoltDiff (CNR1_SWout,1,mVv25,7,True,0, 50Hz,1,0)

PulsePort(2,5000)

Delay(0,20,msec)" allows for settling time ... needed??

VoltDiff (CNR1_LWout,1,mV7_5,7,True,0, 50Hz,1,0)

BrHalf4W (temp,1,mvV25,mv25,3,Vx2,1,2035,True ,True ,0, 50Hz,1.0,0)"CNR1 Pt100
ExciteV(Vx3,2500,0)"This MUST be right after any bridge, P107 and Pa

PRT (CNR1_Pt100,1,temp,1.0,0)

"SR50 Sonic Ranging Sensor (SDI-12 Output) measurements DT, TCDT, and DBTCDT:
While TimeSincel2Von < SR50Warmup

TimeSincel2Von = Timer(2,sec,4)

Wend

IT FastScanMode OR LastFastScan OR Timelntolnterval (0,ScanRate,sec) Then
SDI12Recorder (SR50_SnowHeight(),7,SnowHeightSR50address, " "M11'",1.0,0) "Snowh
SDI12Recorder (SR50_Ablation(),7,AblationSR50address, " "M11**,1.0,0)

Endlf

"Rotronics aspirated shield sensor suite measurement AS_T and AS_RH (the fan i
PulsePort(2,5000)

Delay(0,20,msec)

Whille TimeSincel2Von < HygroClipWarmup

TimeSincel2Von = Timer(2,sec,4)

Wend

VoltSe(AS_T,1,6,14,0,0,_50Hz,1,0)"autorange, no gnd offset correction
VoltSe(AS_RH,1,1,13,1,0,_50Hz,1,0)

BrHalf4W (temp,1l,mV25,mv25,1,Vx2,1,2035,True ,True ,0, 50Hz,1.0,0)"Rotronic Pt
ExciteV(Vx3,2500,0)"This MUST be right after any bridge, P107 and Pa

IT Asp_fan_on Then Aspirated_Meas = True Else Aspirated_Meas = False® so tha
FanPowerDueForSwOff = True®If NOT (FastScanMode) Then FanPowerDueForSwOff =

" PortSet(8,false)

" Asp_fan_on = False

" Endlf

AS_T=AS T*.1

AS_RH=AS_RH*.1

PRT (AS_Pt100,1,temp,1.0,0)

"Rotronics UN-aspirated shield sensor suite measurement US_T and US_RH
PulsePort(2,5000)

Delay(0,20,msec)

VoltSe(US_T,1,6,14,0,0,_50Hz,1,0)"autorange, no gnd offset correction
VoltSe(US_RH,1,1,13,1,0,_50Hz,1,0)

BrHalf4W (temp,1l,mvV25,mv25,5,Vvx2,1,2035,True ,True ,0, 50Hz,1.0,0)"Rotronic Pt
ExciteV(Vx3,2500,0) "This MUST be right after any bridge, P107 and Pane
US_T=US_T*.1

US_RH=US_RH*.1

PRT (US_Pt100,1,temp,1.0,0)

"Now the NT1400 water column pressure transducer

PulsePort(2,5000)

Delay(0,20,msec)

ExciteV(Vx3,2500,0)

Whille TimeSinceVx3on < NT1400Warmup

TimeSinceVx3on = Timer(3,sec,4)

Wend

BrFull (ablation_meter,1,mv250,7,Vx3,1,2500,True ,True ,10000, 50Hz,1.0,0)
Timer(3,sec,3)

50

"resets the MUX (so that even if 12V switched is powered, the MUX itself shoul
PortSet(1,false)

"do now whatever needs the 12V switched supply to be ON and requires warm-up, bu

"GPS work for Garmin (G) or NAL (N) units, or both!

PreParseStr(7)
PreParseStr(9)

0
0

"The Garmin part finds its com2 already open and the prog closes it afterwar
"around the CR1000 bug causing higher power draw if we open/close com2 here
IT GarminlnitOk AND TxModuleGPSpowerOn AND (GPSinUse = *'G') Then

GGPSFLAG = true

GPGGAsentence = "

SerialFlush(com2)"added yesterday

IT SerialOut(com2,"","$GPGGA",1,250) Then
SplitStr(PreParseStr(1),GPGGAsentence,CHR(44),15,5)

PreQual_FP = PreParseStr(7)"we need to do this explicit conversion to
PreHDP_FP = PreParseStr(9)“we need to do this explicit conversion to f

IT PreQual_FP > O AND PreHDP_FP > O AND PreHDP_FP <= BestHDPseen Then
SplitStr(ParseStr(1),GPGGAsentence,CHR(44),15,5)

BestHDPseen = HDP

" Elself NOT (BestHDPseen < 100) Then"so to avoid deleting a previously

" For ParseStriT=1 To 15

" ParseStr(ParseStriIT)=""
- Next

EndIf

IT NOT (BestHDPseen < 100) Then"so to avoid deleting a previously obta
For ParseStriT=1 To 15

ParseStr(ParseStriT)=""

Next

Endlf

Endlf

GGPSFLAG = false

TxPowerDueForSwOff = True

Endlf

"The NAL part (it opens and closes his ComRS232 port itself)

IT TxInitializeOk AND TxModuleGPSpowerOn AND (GPSinUse = "N'") Then
NGPSFLAG = true

GPGGAsentence = "™

SerialOpen(ComRS232,19200,0,0,150)

SerialOut(ComRS232, "AT""+CHR(13)+CHR(10),""",1,10) "this is to let the CR1000
SerialOut(ComRS232, ""AT+PA=1""+CHR(13)+CHR(10),"",1,10)

If SerialOut(ComRS232,"","$GPGGA™,1,150) Then

Serial In(GPGGAsentence,ComRS232,150,"*",150) "was 13
SplitStr(PreParseStr(1),GPGGAsentence,CHR(44),15,5)

PreQual_FP = PreParseStr(7)"we need to do this explicit conversion to
PreHDP_FP = PreParseStr(9)“we need to do this explicit conversion to f
IT PreQual_FP > O AND PreHDP_FP > O AND PreHDP_FP <= BestHDPseen Then
SplitStr(ParseStr(1),GPGGAsentence,CHR(44),15,5)

BestHDPseen = HDP

Endlf

e IT NOT (sBestHDPseen < 100) Then"so to avoid deleting a previously
e For sParseStriT=1 To 15

"= sParseStr(sParseStriIT)="""

e Next

"= EndIf

Else

51

TxInitializeOk = False

EndIf

IT NOT (FastScanMode OR LastFastScan) Then

SerialOut(ComRS232, "AT+PP=0"+CHR(13)+CHR(10),""*,1,10)

EndIf

SerialClose(ComRS232)

NGPSFLAG = false

TxPowerDueForSwOff = True

Elself (FastScanMode OR LastFastScan)

Call TxModulelnit

IT TxInitializeOk Then

SerialOut(ComRS232, "AT*S=0""+CHR(13)+CHR(10),""",1,10)
SerialOut(ComRS232, ""AT+PP=1"+CHR(13)+CHR(10),""",1,10) "should be sent as
SerialOut(ComRS232, " AT+PNAV=1"+CHR(13)+CHR(10),"",1,10) "should be sent a
SerialClose(ComRS232)

Endlf

IT NOT (BestHDPseen < 100) Then"so to avoid deleting a previously obtained
For ParseStriT=1 To 15

ParseStr(ParseStriT)=""

Next

Endlf

EndIf

"Final Battery Voltage measurement Batt_Volt and Low_Batt check (do this befor
Battery(Batt_VoltF)

Batt_V Drop = Batt Voltl - Batt_VoltF

If Batt VoltF < LoBattThre Then Low Batt = True

IT Batt _VoltF >= LoBattThre + LoBattResHyst Then Low_Batt = False

TEAEAEAAAAIIEAAAAAAAAAAEA A A A AAAAAAXAA AR AAAAAXAAXAAAAAAAXAXAAAAAAAAAAALAXAXA XA AAAALAAXXddx

"\"SerialClose(com2)
Timer(2,sec,3)
SW12(False)"Disables switched 12V supply
SWi2Von=False
Endlf

IT Timelntolnterval (0,ScanRate,sec) Then
CallTable(TableDiagnostics)
CallTable(TableMem)

" If TableMem.Output(l,1) Then

" BestHDPseen = 100

" EndIf

If¥ FanPowerDueForSwOff AND NOT FastScanMode
PortSet(8,false)

Asp_fan_on = False

FanPowerDueForSwOff = False

EndIf

IT IsSummer Then
CallTable(TableSummerTx)
IT TableSummerTx.Output(1l,1) Then
BestHDPseen = 100
TxBufferString="""
TablelnstantaneousString=
TxStringUnstripped=""
TxString="""
GetRecord(TxBufferString, TableSummerTx,1)
IT Appendinstantaneous AND Timelntolnterval(0O, Hourslnstantaneous, hr) T
CallTable(InstantaneousTable)
GetRecord(TablelnstantaneousString, InstantaneousTable, 1)

52

TxBufferString=Left(TxBufferString, Len(TxBufferString)-2)+","+Mid(Tab
EndIf
CallTable(TxBufferTable)
IT SendRecordBacklog < SummerTableBuffer Then SendRecordBacklog = SendRe

IT TimelntoInterval (0,DiagnosticsRate,hr) AND SendRecordBacklog < Summ
TxBufferString="""

GetRecord(TxBufferString,TableDiagnostics,1)

CallTable(TxBufferTable)

SendRecordBacklog = SendRecordBacklog + 1

Endlf
For SendRecordIT = SendRecordBacklog To 1 Step -1
TxString=""
MpFLAG=true"remove!!
Delay(0,2,sec)"remove!! “Call AppendlnstantMeas “Cal

GetRecord(TxStringUnstripped, TxBufferTable,SendRecordIT)
StripStringStart = InStr(1,TxStringUnstripped,CHR(34)+CHR(34),4)
For StringStripperlT=StripStringStart To Len(TxStringUnstripped)-55 i
StringChar=Mid(TxStringUnstripped, StringStripperiT, 1)
IT StringChar<>CHR(34) Then TxString=TxString+StringChar
Next StringStripperlT
TXString=TxString+", IM'" " ****xkkkkkixxin summer too
"TxString=Right(TxString,Len(TxString)-InStr(1,TxString,CHR(44),4)+0)
Call IridiumTx
MPFLAG=false"remove!!
IT NOT TxSendSuccess Then ExitFor
Next
IT SendRecordIT = 0 Then ResetTable(TxBufferTable)
SendRecordBacklog = SendRecordIT
TxPowerDueForSwOff = True
EndIf
Endlf
IT NOT IsSummer Then
CallTable(TableWinterTx)
IT TableWinterTx.Output(l,1) Then
BestHDPseen = 100
TxBufferString="""
TablelnstantaneousString=
TxStringUnstripped=""
TxString=""
GetRecord(TxBufferString,TableWinterTx,1)
IT AppendInstantaneous AND Timelntolnterval (0, Hourslnstantaneous, hr) T
CallTable(InstantaneousTable)
GetRecord(TablelnstantaneousString, InstantaneousTable, 1)
TxBufferString=Left(TxBufferString, Len(TxBufferString)-2)+","+Mid(Tab
Endlf
CallTable(TxBufferTable)
IT SendRecordBacklog < WinterTableBuffer Then SendRecordBacklog = SendRe

IT TimelntoInterval (0,DiagnosticsRate,hr) AND SendRecordBacklog < Wint
TxBufferString="""

GetRecord(TxBufferString,TableDiagnostics,1)

CallTable(TxBufferTable)

SendRecordBacklog = SendRecordBacklog + 1

Endlf
For SendRecordIT = SendRecordBacklog To 1 Step -1
TxString=""
MpFLAG=true"remove!!
Delay(0,2,sec)"remove!! "Call AppendlnstantMeas "Cal

GetRecord(TxStringUnstripped, TxBufferTable,SendRecordIT)
StripStringStart = InStr(1,TxStringUnstripped,CHR(34)+CHR(34),4)

53

For StringStripperlT=StripStringStart To Len(TxStringUnstripped)-5°5 i
StringChar=Mid(TxStringUnstripped, StringStripperiT, 1)
IT StringChar<>CHR(34) Then TxString=TxString+StringChar
Next StringStripperlT
TXString=TXString+", IM" " ****xkkkkkix*in summer too
"TxString=Right(TxString,Len(TxString)-InStr(1,TxString,CHR(44),4)+0)
Call IridiumTx
MPFLAG=false"remove!!
IT NOT TxSendSuccess Then ExitFor
Next
IT SendRecordIT = 0 Then ResetTable(TxBufferTable)
SendRecordBacklog = SendRecordIT
TxPowerDueForSwOff = True
EndIf
EndIf
Endlf

IT TxPowerDueForSwOff AND NOT (FastScanMode OR LastFastScan) Then
SerialOut(ComRS232, "AT*F""+CHR(13)+CHR(10),"0K",1,100)" to allow 5 secs f
Delay(0,1,sec)

PortSet(6, false)

TxModuleGPSPowerOn = False

TxInitializeOk = False"turn this off??

TxPowerDueForSwOff = False

Endlf

If LastFastScan Then LastFastScan = False

1T FanPowerDueForSwOff AND NOT FastScanMode
PortSet(8, false)

Asp_fan_on = False

FanPowerDueForSwOff = False

Endlf

SerialClose(ComRS232)

Batt_Voltl = -999° Batt_VoltF doesn®"t need such a NODATA value, so it is lef
PulsePort(5,10000)

NextScan

EndProg

54

Appendix E — Telemetry data retrieval program

(Michele Citterio, GEUS)

55

#getdata 1.60f, written by Michele Citterio (mcit@geus.dk) at GEUS, Copenhagen
#coding=cp850

#

#install and use: install pyhton 2.5.2 and pywin32 212, copy this file into an
#empty folder and run it from there. Four files and a folder can be created

#for each IMEI number found when retrievig the emails from the Exchange server:
#1) IMEI#.txt readable comma-separated ascii file - AWS observations

#2) IMEI#-D.txt readable comma-separated ascii file - AWS diagnostics

#3) IMEI#-F.txt readable comma-separated ascii file - malformed msg (from 1.56)
#4) IMEI#-X.txt file with whatever else has been received from that IMEI device
#5) IMEI#/ afolder where individual received email attachments are stored
#One further file msgshash.dat is also created on the first program run and
#updated at every run to store the hashes of already processed mesages, so that
#they can be identified and skipped on later program runs.

#

#revision history:

#1.51, 10-05-2009 + configured PROMICE 2009 binary format

+ configured Quadra Mining 2009 Malmbjerg binary format
+ added Python version 2.5.2 check and made Py3k-aware
+ some code cleanup of try..except blocks

#1.52, 11-05-2009 + configured Glaciobasis 2009 Zackenberg Top binary format
1.53, 09-06-2009 + configured Glaciobasis 2009 Zackenberg Main binary format
+ much improved detection of bin format specification errors
+ fixed wrong format specifications 5, 7 and 12
+ improved the try..except blocks by setting the error types
+ tested for compatibility with up to Python 2.5.4
+ improved handling of user's infostores or folders choices
+ added warning for binary messages longer than specified
+ fixed support of Unicode pathnames, so x:\Sgren works now!
1.54a, 19/06/2009 + attempted workaround to crash in pywin32 on some machines
1.55, 23/09/2009 + fixed 1 h timestamp error. Epochs handling more portable
1.60f, 06/10/2009 + added prompt to sort the *.txt files based on timestamps
+ fixed crash decoding malformed (too long/short) messages
+ truncated messages are decoded using ? for missing values
+ added option to put malformed messages in a separate file
+ added exceptions handling while opening the *.txt files
+ logoff from Exchange server even on unhandled exceptions
+ added check for re-delivered messages (Iridium or NAL bug)
+ MOMSN is also hashed when detecting duplicates
+ use the current user's name as default for Exchange logon
+ improved the printed output during the run and at the end
+ now uses 128 bits hashes: must retrieve all messages again
since -f + do not try to logoff when logon failed due to wrong userid
+ pickle is replaced with cPickle for speed
+ ctrl-break is also trapped and handled same as ctrl-c

HoHHHHFHFH

HoHHHHHFHHHFHHHFH T

56

known issues: the stats about the processed messages and some screen output
while running are wrong (but the data files generated are ok).

Also, when user aborts a file write error, the line is still counted as added
Cause is known and harmless, will be fixed in 1.60 final.

Updated list of format ID numbers (range of format specifications) in use:
1(5-9), 2 (10-14), 3 (15-19), 4 (20-24)

HoH HHHHFH

from __ future__ import with_statement
try:
import sys
if sys.hexversion >= 0x030000FO0:
print ("ERROR: Python 3000 is not supported. Use Python 2.5.4 instead!\n")
sys.exit()
if sys.hexversion < 0x020502F0:
print "WARNING: untested on earlier versions than Python ver. 2.5.2\n"
if sys.hexversion > 0x020504F0:
print "WARNING: untested on later versions than Python ver. 2.5.4\n"
import 0s
import string
import time
import glob
import hashlib
import cPickle
import calendar
import signal
from bintx import *
try:
import win32api
from win32com.client import Dispatch, pywintypes
except ImportError:
print 'Error - PyWin32 is not installed.’
sys.exit()
except ImportError:
print 'ERROR: needed modules from the standard library are not available. Reinstall
Python\n'
sys.exit()

signal.signal(signal. SIGBREAK, signal.default_int_handler)#to trap ctrl-break

localtestmode = False#True

FilterMalformed = True

HashFunc = hashlib.shal#before 1.60 hashlib.sha512() was used but this was much
overkill: even with 128 bits

#there's about 10"-18 chances of an error after 10°10 messages received...

FormatBytesNum = {}

FormatBytesNum(['f'] = 2# value encoded as 2 bytes base-10 floating point (GFP2)
FormatBytesNum['l'] = 4# value encoded as 4 bytes two's complement integer (GLI14)
FormatBytesNum|['t'] = 4# timestamp as seconds since 1990-01-01 00:00:00 +0000
encoded as GL14

FormatBytesNum['g'] = 4# GPS time encoded as GL14

FormatBytesNum['n"] = 4# GPS latitude encoded as GLI14

FormatBytesNum['e'] = 4# GPS latitude encoded as GLI14

FormatSpec = {}

#GlacioBasis 2009 Top

FormatSpec[10] = [49, "tfffffrfrrrrrrrrrrrrrrrrrrrrfgnefffififfff", "GlacioBasis 2009
Top 1-h summer message"]

FormatSpec[11] = [56, "tfffffrrrrrrrrrrrrrrfrrrrrrrrrirfgneffArFrrfrrf", "GlacioBasis
2009 Top 1-h summer message (+ instant.)"]

FormatSpec[12] = [49, "tfffffffrfrrfrrrrrrrfrrrrfgnefffififfff", "GlacioBasis 2009
Top 3-h winter message"]

FormatSpec[13] = [56, "tfffffffrfrfrfffrrrrrrrrfrirffgneffriffrrffff", "GlacioBasis
2009 Top 3-h winter message (+ instant.)"]

FormatSpec[14] = [22, "tFffffffffffffff", "GlacioBasis 2009 Top diagnostic
message"]

#GlacioBasis 2009 Main

FormatSpec[20] = [41, "tffffffrffrfrrrrrgnefffffff", "GlacioBasis 2009 Main 1-
h summer message"]

FormatSpec[21] = [50, "tffffffrrrrreFfrrrrrrrrrfrfgne A, "GlacioBasis 2009
Main 1-h summer message (+ instant.)"]

FormatSpec[22] = [41, "tfffffffffffrfffrfrriffgneffrfffff", "GlacioBasis 2009 Main 3-
h winter message"]

FormatSpec[23] = [50, "tfffffffffrrfrrrfrrrrrirfgne A, "GlacioBasis 2009
Main 3-h winter message (+ instant.)"]

FormatSpec[24] = [22, "tffffffffFiFFifrf", "GlacioBasis 2009 Main diagnostic
message"]

Win32 epoch is 1st Jan 1601 but MSC epoch is 1st Jan 1970 (MSDN gmtime docs),
same as Unix epoch.

Neither Python nor ANSI-C explicitly specify any epoch but CPython relies on the
underlying C

library. CRbasic instead has the SecsSince1990() function.

UnixEpochOffset = calendar.timegm((1970, 1, 1, 0, 0, 0, 0, 1, 0)) #this should always be
0 in CPython on Win32

CRbasicEpochOffset = calendar.timegm((1990, 1, 1, 0, 0, 0, 0, 1, 0))

EpochOffset = UnixEpochOffset + CRbasicEpochOffset

58

#what follows should be turned into methods of a future FormatSpecTable object

FormatSpecAreOK = True
for FormatSpecEntry in FormatSpec.iteritems():
#FormatSpecEntry[1][0]
if FormatSpecEntry[1][0] !'= len(FormatSpecEntry[1][1]):
print ' WARNING: bad format definition for message type %i (%s):\n format
unconsistency (%i values declared but %i specified)’ %(FormatSpecEntry[0],
FormatSpecEntry[1][2],FormatSpecEntry[1][0],len(FormatSpecEntry[1][1]))
FormatSpecAreOK = False#sys.exit()
Length = 1#all messages have a trailing one-byte format ID
for ValueFormat in FormatSpecEntry[1][1]:
try:
Length += FormatBytesNum[ValueFormat]
except KeyError:#ValueFormat is not an existing key
Length =-1
print WARNING: Bad format definition for message type %i (%s):\n unknown
symbol "%s™ %(FormatSpecEntry[0], FormatSpecEntry[1][2],ValueFormat)
FormatSpecAreOK = False#sys.exit()
try:#if the byte length was specified in the format configuration, check it
if FormatSpec[FormatSpecEntry[0]][3] != Length:
print ' WARNING: Bad format definition for message type %i (%s):\n length
unconsistency (%i bytes declared but %i expected)' %(FormatSpecEntry[0],
FormatSpecEntry[1][2],FormatSpec[FormatSpecEntry[0]][3],Length)
FormatSpecAreOK = False#sys.exit()
except IndexError:#the byte length was not specified in the format configuration, so set
it now
FormatSpec[FormatSpecEntry[0]].append(Length)#it initializes a further element in
the table: the message length in bytes
if not FormatSpecAreOK:
print 'ERROR: the message format specifications need corrections'
sys.exit()
return Length

UnicodeEncoding = 'cp850'
BaseDir = 0s.getcwd()
#BaseDir = BaseDir.encode(UnicodeEncoding)
try:
with open(BaseDir + \\msgshash.dat', 'rb") as msgshash:
IsFirstRun = False
SeenMessageHashes = cPickle.load(msgshash)
except IOError:
IsFirstRun = True
print ' WARNING: msgshash.dat not found. Already processed messages (if any) may
be duplicated\n'

59

SeenMessageHashes =[]

SeenMessageHashesPreviousRuns = SeenMessageHashes[:]J#TODO learn better why this

is actually required!

AppendedSummer =0
AppendedWinter =0
AppendedWithinstant = 0
AppendedDiagnostics = 0
ApendedMalformed = 0
ProcessedInfostoreName ="
ProcessedFolderName ="

try:
cdo = Dispatch("MAPI.session™)
DeafultLoginName = win32api.GetUserName()
Login_Prompt = 'Enter the login name (defaults to "%s"): ' %DeafultLoginName
LoginName = raw_input(Login_Prompt)
if not LoginName: LoginName = DeafultLoginName
try: #this is to catch all otherwise unhandleld exceptions and logoff from the server
try:
print 'Logging in as %s..."' %LoginName,
cdo.Logon(LoginName) # MAPI profile name
LoggedIn = True
print ' OK'
except pywintypes.com_error, errordetails:
print 'ERROR: COM API error %s (%s) - wrong login' %(errordetails[0],
errordetails[1])
sys.exit()

InfoStores=cdo.InfoStores
InfoStoresCount = cdo.InfoStores.Count
print \nThere are %i infostores available:" %InfoStoresCount
DefaultInfoStore = 'Postkasse - ice'
DefaultInfoStoreNum =0
#InfoStoreNum = 0
InfoStoresList =[]
for it in range(InfoStoresCount):
InfoStoreName = InfoStores[it]. Name
InfoStoresList.append(InfoStoreName)
print '%i) %s' %(it+1, InfoStoreName.encode(UnicodeEncoding))
if InfoStoreName == DefaultinfoStore: DefaultinfoStoreNum = it#+1
if DefaultinfoStoreNum:
InfoStore_Prompt = 'Enter the desired infostore [1, %i] (defaults to "%s"): '
%(InfoStoresCount, DefaultInfoStore.encode(UnicodeEncoding))
else:

60

InfoStore_Prompt = 'Enter the desired infostore [1, %i]: ' %InfoStoresCount
while True:
InfoStore = raw_input(InfoStore_Prompt)
if not len(InfoStore): break
try:
InfoStore = int(InfoStore)
if InfoStore < 0: raise ValueError
if InfoStore > InfoStoresCount: raise ValueError
break
except ValueError:
print "WARNING: not in the range [1, %i]" %InfoStoresCount
if not InfoStore:
InfoStoreNum = DefaultinfoStoreNum
else:
InfoStoreNum = InfoStore - 1#needs to be 0-based to be used as an index
try:
ProcessedInfostoreName = cdo.Infostores[InfoStoreNum -
0].Name.encode(UnicodeEncoding)
print 'Looking for folders in %s..." %ProcessedInfostoreName,
Folders = cdo.Infostores[InfoStoreNum - 0].RootFolder.Folders
print ' OK'
except:#TODO: restrict the error type
print 'Error - Bad infostore.'
#cdo.logoff
sys.exit()

FoldersCount = Folders.Count
print \nThere are %i folders available:' %FoldersCount
DefaultFolder = 'Indbakke'’
DefaultFolderNum = O#remove?
FolderNum =0
FoldersList =[]
for it in range(FoldersCount):
FolderName = Folders[it]. Name
FoldersList.append(FolderName)
print '%i) %s' %(it+1, FolderName.encode(UnicodeEncoding))
if FolderName == DefaultFolder: DefaultFolderNum = it#+1
if DefaultFolderNum:
Folder_Prompt = 'Enter the desired folder [1, %i] (defaults to "%s"):
%(FoldersCount, DefaultFolder.encode(UnicodeEncoding))
else:
Folder_Prompt = 'Enter the desired folder [1, %i]: '%FoldersCount
while True:
Folder = raw_input(Folder_Prompt)
if not len(Folder): break

61

try:
Folder = int(Folder)
if Folder < O: raise ValueError
if Folder > FoldersCount: raise ValueError
break
except ValueError:
print "WARNING: not in the range [1, %i]" %FoldersCount

if not Folder:

FolderNum = DefaultFolderNum
else:

FolderNum = Folder - 1#needs to be 0-based to be used as an index
try:

ProcessedFolderName = Folders[FolderNum -
0].Name.encode(UnicodeEncoding)

print 'Looking for messages in %s..."' %ProcessedFolderName,

Messages = Folders[FolderNum - 0].Messages

print' OK'

except:

print 'Error - Bad folder.'

#cdo.logoff

sys.exit()

MessagesCount = Messages.Count
print \nThere are %i messages available... (wait!)' %MessagesCount
ProcessedMessages = 0
ProcessedAttachments = 0
AppendedLines =0
SkippedDuplicated = 0
SkippedAlreadyParsed = 0
FoundMalformed = 0
Message = Messages.GetFirst()# ref. http://mail.python.org/pipermail/python-
list/2004-July/270944.html
ModifiedFiles =[]
while Message:# ref. http://mail.python.org/pipermail/python-list/2004-
July/270944.html
#for Message in Messages:# ref. http://mail.python.org/pipermail/python-list/2004-
July/270944.html
ProcessedMessages += 1#TODO move to lower down
if 'sbdservice@sbd.iridium.com' in Message.Sender.Name.lower() and
Message.Attachments.Count == 1:
ProcessedAttachments += 1
Attachment = Message.Attachments.ltem(1)
AttachmentName = Attachment.Name.lower().encode(UnicodeEncoding)
IMEI = AttachmentName[0: AttachmentName.index('_"]

62

MOMSN =
AttachmentName[AttachmentName.index('_")+1:AttachmentName.index(".")]
ThisIMEIDir = BaseDir + \\' + IMEI + "\\#TODO make it more portable using
the path module
if not glob.glob(ThisIMEIDir): #this IMEI has already been seen
os.mkdir(BaseDir + '\\' + IMEI.encode(UnicodeEncoding))#TODO make it
more portable using the path module
Attachment.WriteToFile(ThisIMEIDir + AttachmentName)#TODO add
exceptions handling
with open(ThisIMEIDir + AttachmentName, 'rb") as InFile:#TODO add
exceptions handling
IsTooLong = False
IsTooShort = False
DataLine = InFile.read(420)
if len(DataLine) == 0: break
if DataLine[0].isdigit():
IsKnownBinaryFormat = False
MessageFormatNum = -9999
else:
MessageFormatNum = ord(DataLine[0])
try:
MessageFormat = FormatSpec[MessageFormatNum]
IsKnownBinaryFormat = True
except KeyError:
IsKnownBinaryFormat = False
UnknMsgFormNum = MessageFormatNum
if IsKnownBinaryFormat:#TODO bring all this "if" into the try logic
above
print '%s-%s (binary)' %(IMEI, MOMSN) , MessageFormat[2]
ExpectedMsgLen = FormatSpec[MessageFormatNum][3]
if len(DataLine) < ExpectedMsgLen:
IsTooShort = True
elif len(DataLine) > ExpectedMsgLen:
IsTooLong = True
BinaryMessage = DataLine[1:]
DatalLine =" #this is a bit crap but works... to be fixed when turning the
decoder into a func
BytePointer = 0
for ValueNum in range(0, MessageFormat[0]):#TODO - use an iterator
instead of indexes
ValueBytes = []
ValueBytesNum =
FormatBytesNum[MessageFormat[1][ValueNum]]
if MessageFormat[1][ValueNum] == "'f".
try:
for offset in range(0,ValueBytesNum):

63

ValueBytes.append(ord(BinaryMessage[BytePointer +
offset]))
BytePointer = BytePointer + ValueBytesNum
Value = GFP2toDEC(ValueBytes)
if Value == 8191:
DataLine = DataLine + "NAN"
elif Value == 8190:
DatalLine = DataLine + "INF"
elif Value == -8190:
DataLine = DataLine + "-INF"
else:
DataLine = DataL.ine + str(Value)
#print ValueBytes, Value
except IndexError:
DatalLine = DataLine + "'
if MessageFormat[1][ValueNum] =="I":
try:
for offset in range(0,ValueBytesNum):
ValueBytes.append(ord(BinaryMessage[BytePointer +
offset]))
BytePointer = BytePointer + ValueBytesNum
Value = GLI4toDEC(ValueBytes)
DatalLine = DataLine + str(Value)
if Value ==-2147483648:
DataLine = DataLine + "NAN"
else:
DataLine = DataL.ine + str(Value)
#print ValueBytes, Value
#print ValueBytes, Value
except IndexError:
DataLine = DataLine + '?'
elif MessageFormat[1][ValueNum] =="t".
try:
for offset in range(0,ValueBytesNum):
ValueBytes.append(ord(BinaryMessage[BytePointer +
offset]))
BytePointer = BytePointer + ValueBytesNum
Value = GLI4toDEC(ValueBytes)
DatalLine = DataLine + time.strftime("%Y -%m-%d
%H:%M:%S", time.gmtime(Value + EpochOffset)) +',' + str(Value)
#print ValueBytes, Value, time.asctime(time.gmtime(Value +
631148400))
except IndexError:
DataLine = DataLine + '?'
elif MessageFormat[1][ValueNum] =="'g":

try:

for offset in range(0,ValueBytesNum):
ValueBytes.append(ord(BinaryMessage[BytePointer +
offset]))
BytePointer = BytePointer + ValueBytesNum
Value = GLI4toDEC(ValueBytes)/100.0
Dataline = DataLine + str(\Value)
#print ValueBytes, Value
except IndexError:
DataLine = DataLine + '?'
elif MessageFormat[1][ValueNum] =='n":
try:
for offset in range(0,ValueBytesNum):
ValueBytes.append(ord(BinaryMessage[BytePointer +
offset]))
BytePointer = BytePointer + ValueBytesNum
Value = GLI4toDEC(ValueBytes)/100000.0
DataLine = DataL.ine + str(Value)
#print ValueBytes, Value
except IndexError:
DatalLine = DataLine + '?'
elif MessageFormat[1][ValueNum] =="'e".
try:
for offset in range(0,ValueBytesNum):
ValueBytes.append(ord(BinaryMessage[BytePointer +
offset]))
BytePointer = BytePointer + ValueBytesNum
Value = GLI4toDEC(ValueBytes)/100000.0
DatalLine = DataLine + str(\Value)
#print ValueBytes, Value
except IndexError:
DataLine = DataLine + '?'
DataLine = DataLine + "'
DataLine = DataLine[:-1] # to remove the trailing comma character
IsDiagnostics = 'ID" in DataLine[-5:-3] or MessageFormatNum % 5 ==
4#FIXME: the stats are wrong because we don't always go through here
IsObservations = '!M" in DataLine[-2:] or IsKnownBinaryFormat
IsSummer = ('!S' in DataLine and '!M" in DataLine[-2:]) or
MessageFormatNum % 5 in (0, 1)
IsWinter = ("'W'" in DataLine and ''M" in DataLine[-2:]) or
MessageFormatNum % 5 in (2, 3)
IsWithInstant = '!I' in DataLine[-5:-3] or MessageFormatNum % 5 in (1, 3)
if not IsKnownBinaryFormat:
print '%s-%s' %(IMEI, MOMSN),
if IsDiagnostics: print '(ascii) generic diagnostic message',
elif IsObservations and IsSummer:print '(ascii) generic summer
observations message',

65

elif IsObservations and not IsSummer: print ‘(ascii) generic winter
observations message',
else: print 'unrecognized message format',
if IsWithInstant:
print '(+ instant.)’
else:
print "
IsMalformed = IsTooLong or IsTooShort
if IsMalformed:
FoundMalformed += 1
print" WARNING - Message is malformed: any missing value will be
replaced by '?™
DataLineHash = HashFunc(IMEI + MOMSN + DataL.ine).hexdigest()
if not DataLineHash in SeenMessageHashes:
if IsMalformed and FilterMalformed:
MalformedFilePath = BaseDir + \\' + IMEI + '-F.txt'
while True:
try:
with open(MalformedFilePath, 'a") as OutFile:
OutFile.writelines(DataLine+'\n")
if not MalformedFilePath in ModifiedFiles:
ModifiedFiles.append(MalformedFilePath)
break
except IOError:
while True:
AbortOrRetry = raw_input('ERROR while opening %s: Abort or
Retry? [A/R]' %MalformedFilePath)
if AbortOrRetry.upper() in (A', 'R"): break
if AbortOrRetry.upper() =="'A": break
elif IsDiagnostics:
DiagnosticFilePath = BaseDir + \\' + IMEI + "-D.txt'
while True:
try:
with open(DiagnosticFilePath, 'a") as OutFile:
OutFile.writelines(DataLine+'\n")
if not DiagnosticFilePath in ModifiedFiles:
ModifiedFiles.append(DiagnosticFilePath)
break
except IOError:
while True:
AbortOrRetry = raw_input('ERROR while opening %s: Abort or
Retry? [A/R] %DiagnosticFilePath)
if AbortOrRetry.upper() in (A', 'R"): break
if AbortOrRetry.upper() =="'A": break
elif IsObservations:
ObservationFilePath = BaseDir + \\' + IMEI + ".txt'

66

while True:
try:
with open(ObservationFilePath, 'a") as OutFile:
OutFile.writelines(DataLine+'\n")
if not ObservationFilePath in ModifiedFiles:
ModifiedFiles.append(ObservationFilePath)
break
except IOError:
while True:
AbortOrRetry = raw_input('ERROR while opening %s: Abort or
Retry? [A/R] %0ObservationFilePath)
if AbortOrRetry.upper() in (A', 'R"): break
if AbortOrRetry.upper() =="'A": break
else: #if not diagnostics nor a properly terminated message or known
binary format, then it's garbage and gets dumped here
GarbageFilePath = BaseDir + '\\' + IMEI + '-X.txt'
while True:
try:
with open(GarbageFilePath, 'a") as OutFile:
OutFile.writelines(DataLine+'\n")
break
except IOError:
while True:
AbortOrRetry = raw_input('ERROR while opening %s: Abort or
Retry? [A/R]' %GarbageFilePath)
if AbortOrRetry.upper() in (A', 'R"): break
if AbortOrRetry.upper() =="A": break
#the -X.txt garbage files are not sorted since we don't know what is in
them
SeenMessageHashes.append(DataLineHash)
AppendedLines +=1
if IsSummer: AppendedSummer += 1
if IsWinter: AppendedWinter +=1
if IsWithInstant: AppendedWithInstant +=1
if IsDiagnostics: AppendedDiagnostics += 1
if IsMalformed: ApendedMalformed +=1
else:
if DataLineHash in SeenMessageHashesPreviousRuns:
SkippedAlreadyParsed += 1
print' NOTE - Message has already been parsed: skipping'

else:#note this is not 100% accurate: on subsequent runs, repeated are just
detected as duplicated

SkippedDuplicated += 1

print' NOTE - Message was sent more than once (an Iridium or NAL
bug): skipping'

#see emails in March 2008 with NAL engineers recognizing the issue

67

#DataLine ="
Message = Messages.GetNext()# ref. http://mail.python.org/pipermail/python-
list/2004-July/270944.html
try:
with open(BaseDir + "\\msgshash.dat', 'wb') as msgshash:
cPickle.dump(SeenMessageHashes, msgshash)
except IOError:
print "Warning - Couldn't save the hashes of the new messages"
except:
print 'ERROR: an unhandled exception occurred, terminating the program.’
raise
finally:
if 'LoggedIn’ in locals():
try:
print \nlogging off from the Exchange server...",
cdo.logoff
print 'ok\n’'
except:
print \nWARNING - Failed to log off from the Exchange server\n'
except pywintypes.com_error, errordetails:
print ' ERROR: COM API error %s (%s) - MAPI may not be available on this machine'
%(errordetails[0], errordetails[1])
sys.exit()

#MissingAttachments = 100 - ProcessedMessages / ProcessedAttachments * 100
if ProcessedMessages:

print 'messages processed: %i' %ProcessedMessages, ' (from %s/%:s)'
%(ProcessedInfostoreName, ProcessedFolderName)

print 'data attachments found: %i' %ProcessedAttachments
if SkippedAlreadyParsed:

print 'known messages skipped: %i (already parsed during previous program runs)’
%SkippedAlreadyParsed
if SkippedDuplicated:

print 'repeated messages skipped: %i (due to a bug on the Iridium or NAL side)’
%SkippedDuplicated

print 'new records appended: %i' %AppendedLines

if AppendedSummer: print' at summer rate: %i' %AppendedSummer

if AppendedWinter: print' at winter rate: %i' %AppendedWinter

if AppendedWithlnstant: print' with instantaneous data: %i' %AppendedWithInstant
if AppendedDiagnostics: print' diagnostic: %i' %AppendedDiagnostics

if ApendedMalformed:

print \nWARNING: %i malformed messages parsed!' %ApendedMalformed,
if FilterMalformed:

print '(using setting: append to IMEI#-F.txt)'
else:

68

print '(using setting: append to IMEI#.txt)'
print """ Messages shorter than expected have missing values replaced with ?
* Any massage longer than expected is decoded up to the expected length
* All original files can be found in the subfolder of the relevant IMEI
* Set bool FilterMalformed to control where these data get appended™™

DoSort ="
#print \n'
while ModifiedFiles:#so that it only asks if any file has actually been modified
DoSort = raw_input('New lines were appended. Time-sort the %i relevant .txt files?
[Y/N]'%len(ModifiedFiles))
if DoSort.upper() in ("Y', 'N'): break
if DoSort.upper() == "Y":#however the -X.txt garbage files are never sorted since we don't
know what is in them
for FileName in ModifiedFiles:
print '%s - reading' %FileName,
while True:
try:
with open(FileName, 'r') as InFile:
FileContent = InFile.readlines()
break
except IOError:
while True:
AbortOrRetry = raw_input('ERROR while opening %s: Abort or Retry?
[A/R]" %FileName)
if AbortOrRetry.upper() in (A', 'R’): break
if AbortOrRetry.upper() =="A": break
print 'ok, sorting',
try:
FileContent.sort()
except NameError:
continue
#os.rename(FileName, FileName + ".old")#TODO: for debug only
print 'ok, writing...",
while True:
try:
with open(FileName, 'w') as OutFile:
OutFile.writelines(FileContent)
break
except IOError:
while True:
AbortOrRetry = raw_input('ERROR while opening %s: Abort or Retry?
[A/R]" %FileName)
if AbortOrRetry.upper() in (A’, 'R"): break
if AbortOrRetry.upper() =="A": break
print 'done!’

69

